

Introduction to Machine Learning

Adeniyi Mosaku

Introduction to ML for Climate Scientists, DKRZ 04.03.24

www.helmholtz.ai

Helmholtz Al

Artificial Intelligence Cooperation Unit

Mission Bring applied AI / ML techniques to your research questions and datasets

Each Unit:

- Young Investigator Group
- AI Consultants

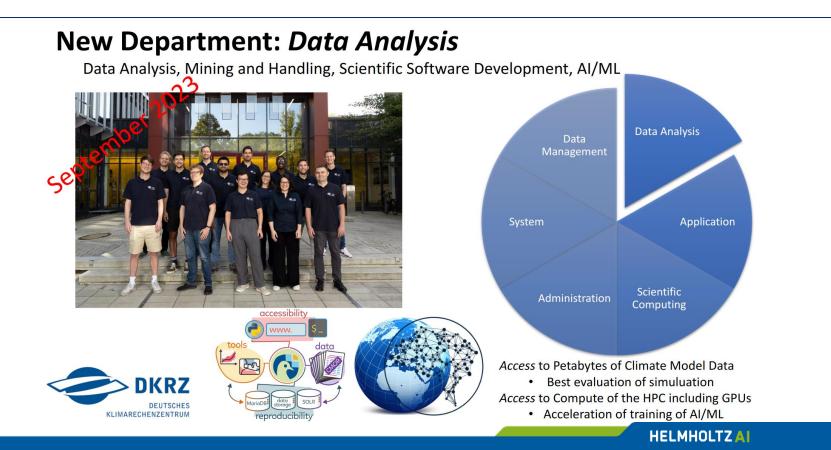
AI Consultants for Earth & Environment

HELMHOLTZAI

Christopher Kadow Johannes Meuer Étienne Plésiat

Danai Filippou Max Witte

CLINT group



What is your name?

What do you expect to learn in this course?

Name one thing that you associate with machine learning

Introduction to Machine Learning for Climate Scientists Workshop Outline

	Day 1, March 4			
13:00	 Introduction to Machine Learning (Adeniyi) A comprehensive overview of the concepts and principle behind Machine Learning Exploration of real-world applications of Machine Learning Differentiating different types of Machine Learning Introducing popular Machine Learning tools and frameworks 			
14:40	Coffee Break			
15:00	 Architectures and Applications (Paul) An overview of state of the art Machine Learning Methods Examples from weather, climate and beyond 			
16:30	 Explainable AI (Harsh) Introduction to Explainable AI (XAI) Importance of Explainability Interpretability techniques and use cases 			

Introduction to Machine Learning for Climate Scientists

Workshop Outline

	Day 2, March 5					
9:00	 PyTorch: Application to Climate Science (Etienne) Setup of the accounts Introduction to PyTorch with examples Definition of the task Creation of the training, validation and test datasets 					
10:30	Coffee Break					
10:45	 PyTorch: Application to Climate Science (Etienne) Building the CNN Training the model Testing the model 					
12:00	Lunch Break					
13:30	 Advanced ML use-case: Reconstructing missing climate data (Johannes) Create and modify inpainting CNN for reconstructing climate data Train the model with different configurations Validate the model on test data 					
15:30	Closing Remarks					

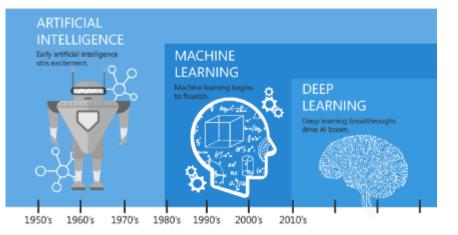
Introduction to Machine Learning for Climate Scientists

Safety and Convenience

- Workshop WIFI:
 - SSID: MLCS Workshop
 - WPA2-PSK: MLCS2024

Coffee breaks are kindly sponsored by Helmholtz AI ©

What is Machine Learning?



Since an early flush of optimism in the 1950's, smaller subsets of artificial intelligence - first machine learning, then deep learning, a subset of machine learning - have created ever larger disruptions. Machine learning algorithms build a model based on sample data, known as "training data", in order to make predictions or decisions without being explicitly programmed to do so.

HELMHOLTZ A

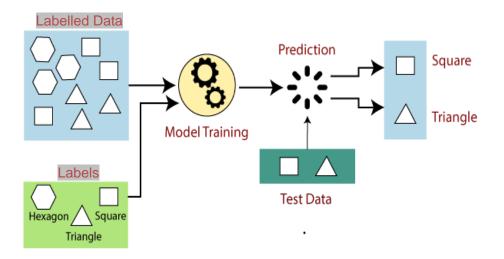
Deep learning: uses neural networks as models

Machine Learning Progress

- 1990s: Support Vector Machine
- 2010: Deep Learning Resurgence
- 2014: Generative Adversarial Networks
- 2015: AlphaGo
- 2016: AlphaGo Zero
- 2018: Transformer (BERT)
- 2020: AlphaFold
- **2020**: GPT-3 (Generative Pre-trained Transformer 3)

Supervised Machine Learning

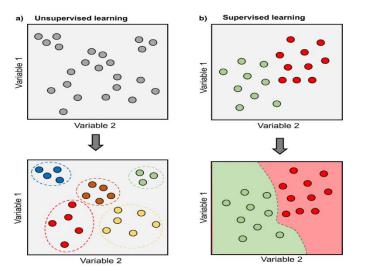
- The algorithm is trained on a labelled dataset
- Input data is paired with corresponding target labels.

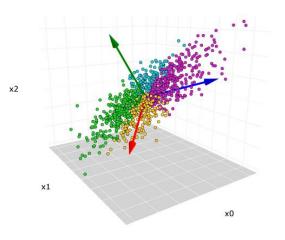


• Example: Classification, Regression

Unsupervised Machine Learning

- The algorithm is trained on an unlabelled dataset
- Discover hidden patterns, relationships, or clusters within the data.

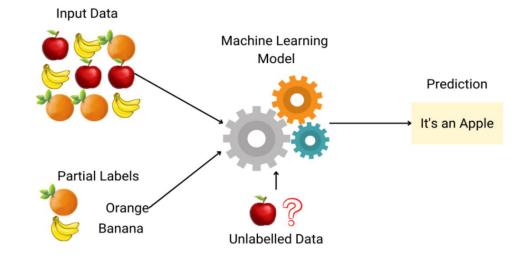




Example: Clustering, Dimensionality Reduction, PCA

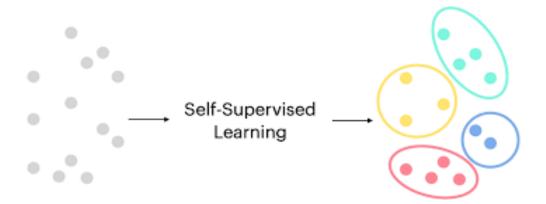
Semi-supervised Machine Learning

- The algorithm is trained on an labelled and unlabelled dataset
- Leveraging on labelled and unlabelled data to improve performance
- It saves time from data labelling



Self-supervised Machine Learning

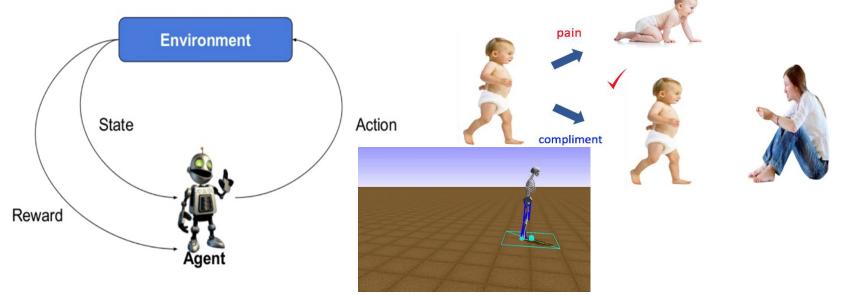
- A special type of unsupervised learning
- The algorithm generates its own labels from input dataset
- It does not require external labels



Example: Auto-encoders, Contrastive learning

Reinforcement Machine Learning

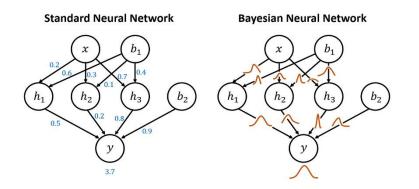
- An agent interacting with an environment and learning based on feedback
- Learn a policy that maximizes cumulative reward over time



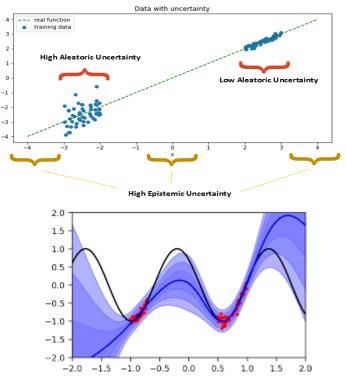
Example: Humanoid robots, Games, autonomous system

Probabilistic Machine Learning

- Data and Model include uncertainties
- We need to capture these uncertainties
- Probability distributions are maintained over weight



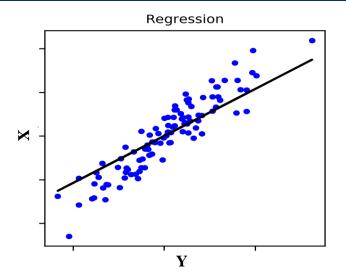
Example: Bayesian Neural Network BNN



>

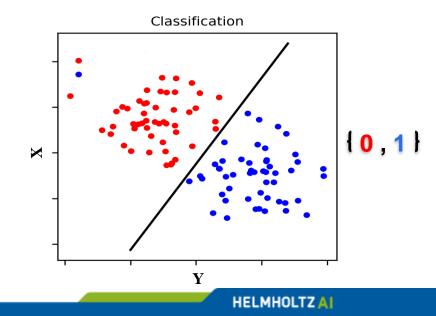
Regression and Classification in Machine Learning

Introduction



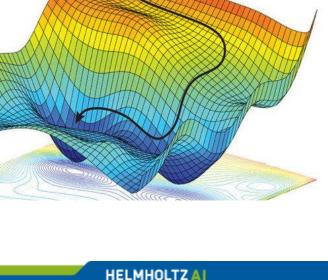
- Regression: Predicting a continuous outcome
- The output are continuous values

- Classification: Assigning instances to classes
- The output are probabilities using softmax



Regression and Classification in Machine Learning Loss Function and Optimization

- Loss functions measure the disparity between predicted and actual values
- Aim is to minimize the loss function model
- Optimization helps to find the right and fastest path
 - Stochastic Gradient Descent (SGD)
 - Adaptive Moment (Adam)
 - Adaptive Gradient (Adagrad)
 - ...



Regression and Classification in Machine Learning Loss Function Types

Regression: Mean Squared Error (MSE)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

n

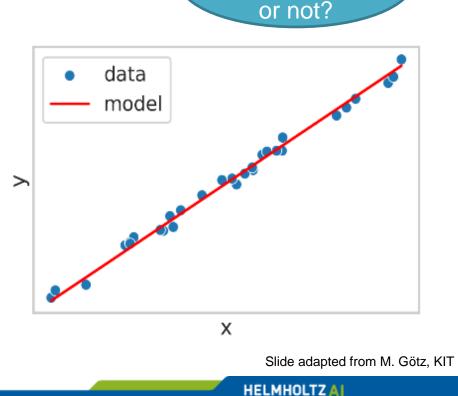
Classification: Cross-Entropy Loss

- Domain informed loss function
 - Created by domain scientists based on governing rules
 - Example: PINN (Physics Informed Neural Network)

Typical Machine Learning Procedure

Simple Linear Regression

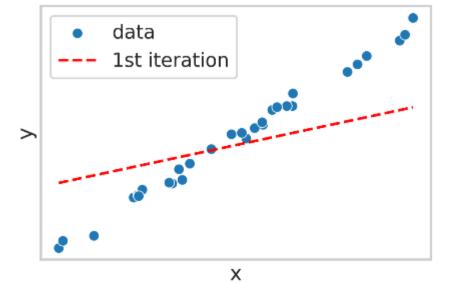
- Data set
 - $D = \{features, labels\} = \{x, y\}$
- Model
 - Defined as $\hat{y} = wx + b$
 - Trainable parameters w, b
- Loss function
 - $L(w,b) = \frac{1}{N} \sum_{i=1}^{N} (y_i \hat{y}_i)^2 = 1$
- Training: minimize the loss function
 - \rightarrow parameters \hat{w}, \hat{b}



Are these

data labeled

Optimizing by Gradient Descent

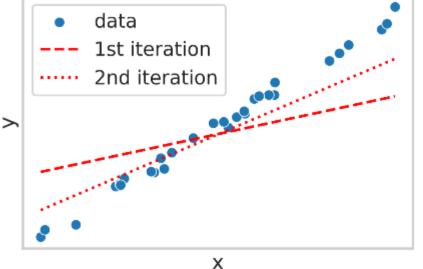


- Start with a random guess for the trainable parameters: w_i
- Calculate the loss function $L(w_i)$
- Parameter update in the direction of negative gradient

$$w_{i+1} = w_i - \alpha \nabla_{w_i} L(w_i)$$

Slide adapted from M. Götz, KIT

Optimizing by Gradient Descent



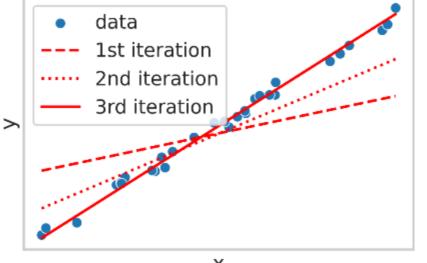
- Start with a random guess for the trainable parameters: w_i
- Calculate the loss function $L(w_i)$
- Parameter update in the direction of negative gradient

$$w_{i+1} = w_i - \alpha \nabla_{w_i} L(w_i)$$

Learning rate α (typically $\in [0.0001, 0.1]$)

Slide adapted from M. Götz, KIT

Optimizing by Gradient Descent



- Start with a random guess for the trainable parameters: w_i
- Calculate the loss function $L(w_i)$
- Parameter update in the direction of negative gradient

$$w_{i+1} = w_i - \alpha \nabla_{w_i} L(w_i)$$

• Learning rate α (typically $\in [0.0001, 0.1]$)

х

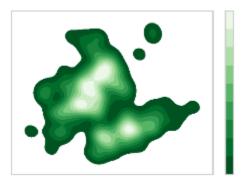
Slide adapted from M. Götz, KIT

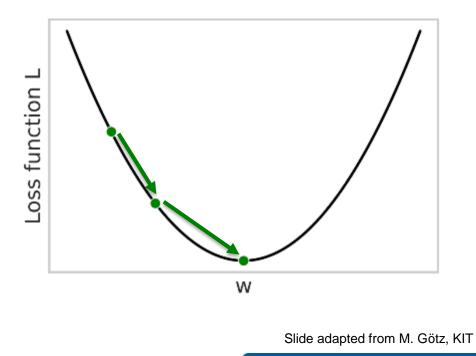
Visualizing the training procedure

Weight update

$$w_{i+1} = w_i - \alpha \nabla_{w_i} L(w_i)$$

 In practice: more than one trainable parameter → find local minimum



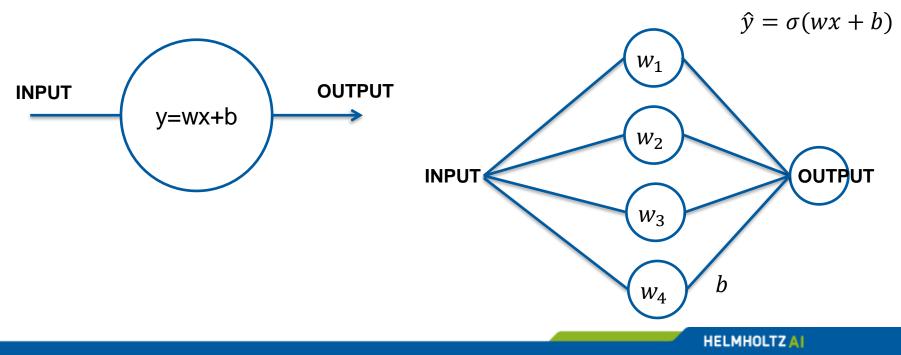


HELMHOLTZ

From linear regression to neural networks

Linear regression: one "neuron"

 Neural network: stack neurons and add nonlinear activation function

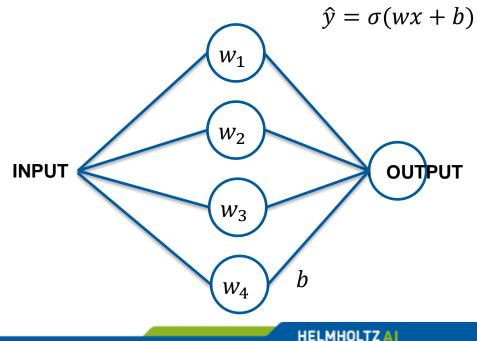


Neural network

- Universal approximation theorem: NN can approximate any "well-behaved" non-linear function
- Now: 5 trainable parameters

 $L = L(w_1, w_2, w_3, w_4, b)$

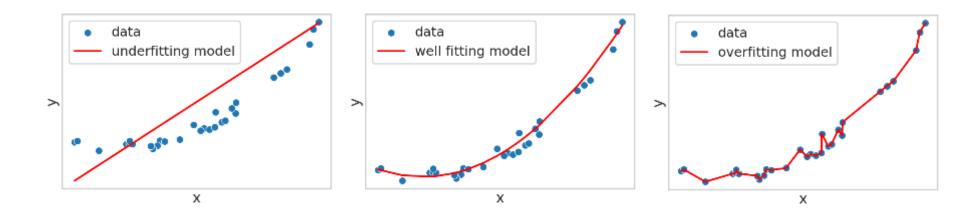
 Large language models: 175 billion trainable parameters Neural network: stack neurons and add nonlinear activation function

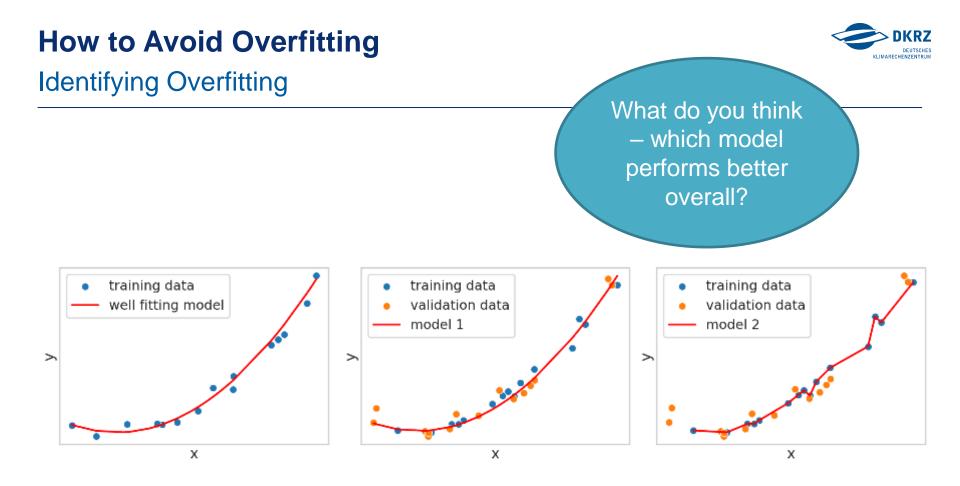


Evaluating Machine Learning Algorithms

Overfitting

- Overfitting: neural network learns to reproduce training data exactly
 - \rightarrow Does not generalize well



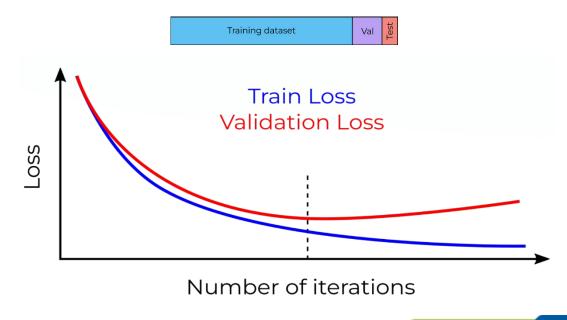


HELMHOLTZ AI

How to Avoid Overfitting

Training and validation data split

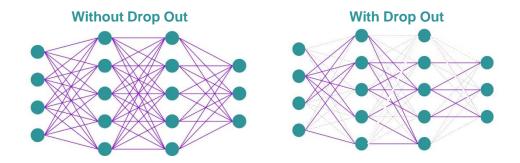
- Separate validation data (typically 10-20%)
- After training step, calculate the loss function using *only* the validation set



How to Avoid Overfitting

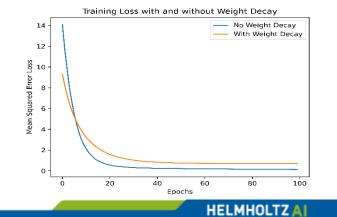
Regularization Technique

- Make use of dropout technique
 - Neurons are randomly dropped
 - It prevents over-dependent
 - Partial drop out could also be used
 - No dropout on output layer



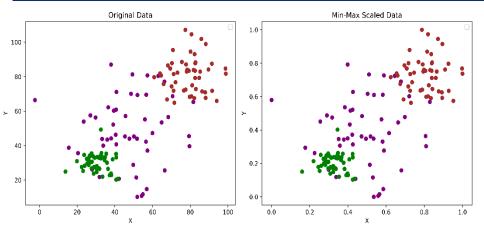
Make use of weight decay regularization

$$\begin{aligned} \text{RegularizedCost} &= \text{Cost} + \lambda \sum_{i} w_i^2 \\ \text{updatedWeight}_i &= \text{weight}_i - \alpha(grad_i + 2\lambda w_i) \end{aligned}$$



How to Improve Model

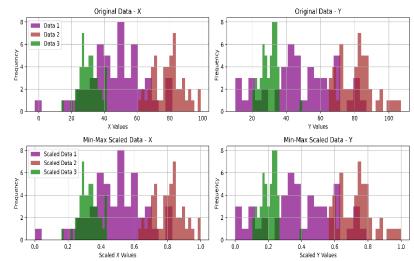
Normalization



Common Normalization Methods

- Mix-Max Scaler
- Z-score Normalization
- Robust Scaler

- Ensure feature of similar scale
- Helps in convergence of model
- Indirectly prevents over-fitting



HELMHOLTZ

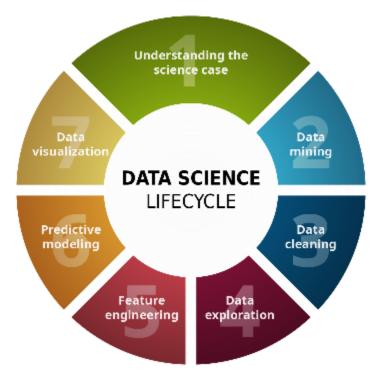
How to Improve Model

Hyper-parameter Optimization

Common Hyper-parameters Learning rate α Low α Batch size Loss High α Kernel size Epoch size Good α Dropout rate . . .

Number of iterations

Typical machine learning project cycle



- Common thinking: I will spend a lot of time in model development
- Reality: 90% of time is spent in data science parts
- Always set your code up for an iterative process
- Always follow best practices

Successful Machine Learning Projects

What do you need?

- Data that holds the necessary information and is of good quality
 - Garbage in, garbage out"
 - Think in advance: How much data do you have? Can you obtain more?

- Model
 - Find the right model for your task (we will cover some in the course)
- Computational resources
 - Machine learning relies on GPUs
 - e.g. DKRZ Levante, JUWELS (HAICORE)

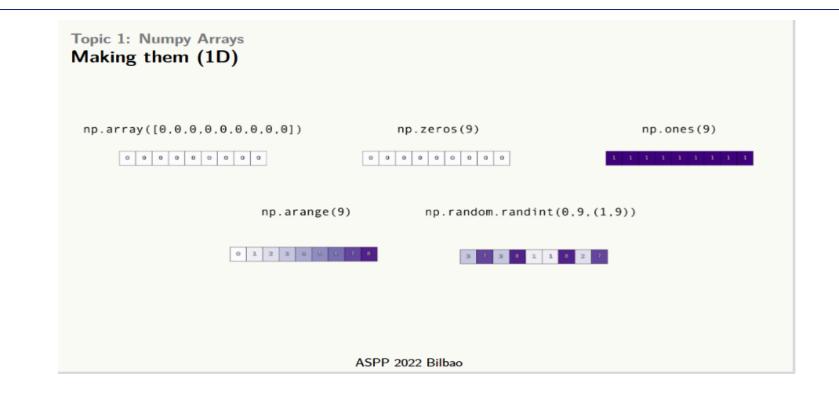
Questions?

Machine Learning and Python

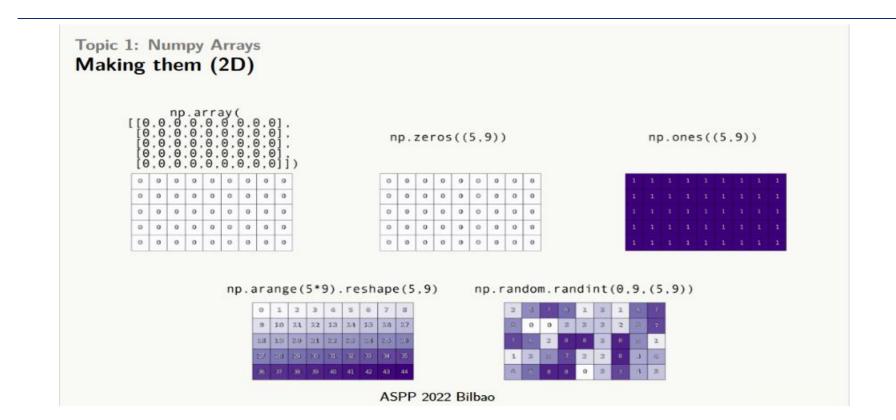
Libraries for data science and machine learning

https://devopedia.org/images/article/149/8470.1648284292.jpg

Numpy



Numpy



https://raw.githubusercontent.com/ASPP/2022-bilbao-advanced-numpy/master/ASPP_Numpy.pdf

HELMHOLTZAI

https://docs.xarray.dev/en/stable/

Extends numpy and panda: labelled multidimensional datasets

- Data model builds on netcdf standard → widely used for climate data
- Offers lazy loading define all computations without loading the data from disk

xarray

A library for labelled datasets

xarray

Opening a netcdf file with xarray

ds = xr.open dataset(nc file)

[20]: xarray.Dataset

Dimensions:	(time : 12, bnds: 2, depth : 46, nodes_3d: 126859)				
▼ Coordinates:					
time	(time)	object	2293-01-31 23:59:59 2293-12	8	
depth	(depth)	float64	-0.0 10.0 20.0 5.65e+03 5.9e+03	8	
▼ Data variables:					
time_bnds	(time, bnds)	object			
thetao	(time, depth, nodes_3d)	float32		8	
▼ Attributes:					
CDI :	Climate Data Interface v	ersion 1.9	9.6 (http://mpimet.mpg.de/cdi)		
Conventions :	CF-1.6				
history :	Thu Jul 30 13:23:33 2020: cdo -s monmean -shifttime,-1sec /work/ba1066/a270124/esm-ex periments/awicm_pism//RCP85/outdata/fesom//RCP85_fesom_thetao_22930101.nc /work/				
	ba1066/a270124/esm-experiments/awicm_pism//RCP85/outdata/fesom//RCP85_fesom_th				
	tao_22930101_monmea	n.nc			
output_schedule :	unit: m first: 1 rate: 1				

xarray

Create a DataArray

- List of precipitation values at different weather stations
- Annotate data array
 - Data
 - Coordinates
 - Dimensions
 - Name
 - Attributes
- → Much more descriptive than a standard numpy array

pr_data_xr = xr.DataArray(pr_data[:,0],
<pre>coords={"lon":("Station",pr_data[:,1]),</pre>
<pre>"lat":("Station",pr_data[:,2])},</pre>
dims=["Station"],
name="Precipitation",
<pre>attrs={"units":"mm",</pre>
"coords":"lon lat"})

Questions?

