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Resources

▪ Dive into Deep Learning:
https://d2l.ai/index.html

▪ Hands-on Machine Learning

▪ youtube

▪ https://towardsdatascience.com/

https://d2l.ai/index.html


What to expect

● A look into the toolbox

● We won’t be going deep into the math

● It will be overwhelming

● Focus is on Deep Learning

● Examples from weather and climate science

● probably some overlap to earlier presentations

● break after around 40mins



Outline

▪ Machine Learning (but not deep learning)
▪ Deep Learning:

▪ Multilayer Perceptron
▪ Convolutional Neural Networks 
▪ Recurrent Neural Networks
▪ Transformers
▪ Graph Neural Networks

▪ Autoencoders
▪ Probabilistic Deep Learning
▪ Physics-Informed Deep Learning
▪ Coupling general circulation models with ML model
▪ AI weather prediction



Machine Learning (but not deep learning)

https://flatironschool.com/blog/deep-learning-vs-machine-learning/



Machine Learning (but not deep learning)

https://flatironschool.com/blog/deep-learning-vs-machine-learning/https://www.baeldung.com/cs/machine-learning-vs-deep-learning



Machine Learning (but not deep learning)

▪ Linear Regression
▪ Support Vector Machines (SVM)
▪ Random Forests
▪ k-means clustering
▪ Principal Components Analysis (PCA)
▪ …

For many tasks, these algorithms are sufficient. 

https://flatironschool.com/blog/deep-learning-vs-machine-learning/



Random Forest

▪ A random forest is an ensemble of 
decision trees

▪ regression or classification
▪ easy to train, works with little data
▪ returns feature importance by design -> 

Interpretability and Explainability out of 
the box!

▪ predicting convective downdrafts: 
https://agupubs.onlinelibrary.wiley.com/
doi/full/10.1029/2022MS003048

Predicting baseball player’s salary using average home runs 
and years of experience 
https://www.statology.org/random-forests/



Deep Learning



Multilayer Perceptrons

▪ The “standard” neural net
▪ “fully connected layers”, or “dense 

layers”
▪ calculate hidden state H using 

weights (W) and biases (b) and 
activation function

W: weight matrix
b: biases
sigma: nonlinear function

X: input vector
H: hidden or “latent” state
O: output

W1

W2



Multilayer Perceptrons

▪ Weights and biases are the 
parameters that are “learned”

▪ input x has “4 features”
▪ The number of hidden layers and 

the amount of neurons can be 
chosen

W2

W1



Multilayer Perceptrons

▪ The “standard” neural net
▪ “fully connected layers”, or “dense 

layers”
▪ Connections between nodes are 

weights
▪ Weights are the parameters that 

are “learned”
▪ input x has “4 features”
▪ The number of hidden layers and 

the amount of neurons can be 
chosen



Multilayer Perceptrons

Nodes are calculated from the 
previous layer’s nodes using the 
weights, biases and activation 
function

W: weight matrix
b: biases
sigma: nonlinear function

X: input vector
H: hidden or “latent” state
O: output

W, b are the trainable parameters

w



Multilayer Perceptrons

Deep Learning is mostly just linear 
Algebra and some Calculus! No need 
to be scared :)



Activation Functions

“Add non-linearity”. Neurons are activated (“they 
fire”) like brain neurons

▪ ReLu

simple and good performance
behaves “well” during backpropagation

▪ Sigmoid

important for some architectures



Let’s go over this again…



Inputs
Source data fed into the neural network, with the goal of making a decision or prediction about the data. 
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Inputs
Source data fed into the neural network, with the goal of making a decision or prediction about the data. 
The data is broken down into binary signals, to allow it to be processed by single neurons—for example an 
image is input as individual pixels.
Training, Validation, Test Set
A set of outputs for which the correct outputs are known, which can be used to train the neural 
networks. 

Inputs

Training, Validation, Test Set

Inputs
Source data fed into the neural network, with the goal of making a decision or prediction about the data. 
The data is broken down into b

General 13/46



w
1
      w

2 
              w

n
 

0.7

0.6

1

0.2

0.6

0.3

?

activation

weights

a
1
+     a

2 
+ … +     

a
n

+b.

bias

 

Inputs

Training, Validation, Test Set

General 14/46

Nodes, Weights, Biases
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Inputs

Training, Validation, Test Set

Activation Function
Each neuron accepts part of the input and 
passes it through the activation function. 
Commonly used functions are the sigmoid 
function, tanh and ReLu. 
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Nodes, Weights, Biases
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Activation 
Function

Outputs
The output of the neural network can 
be a real value between 0 and 1, a 
boolean, or a discrete value (for 
example, a category ID).
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Nodes, Weights, Biases



Questions

we’ll be needing this again…



Multilayer Perceptrons

A great visual introduction:

https://www.youtube.com/watch?v=aircAruvnKk&l
ist=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3
pi



Predicting surface heat fluxes

▪ Predicting surface heat fluxes using a 
neural network trained on observations

▪ input: wind speed, temperature, 
Richardson number

▪ two hidden layers with 64 neurons each
▪ Top: Traditional Approach

Bottom: Neural Network

Muñoz‐Esparza, Domingo, et al. "On the Application of an Observations‐Based 
Machine Learning Parameterization of Surface Layer Fluxes Within an Atmospheric 
Large‐Eddy Simulation Model." Journal of Geophysical Research: Atmospheres 
127.16 (2022): e2021JD036214.



Convolutional Neural Networks

▪ Multilayer Perceptrons do not account for data structure

▪ Convolutional Neural Networks solve this problem

▪ Popular for any 2-dimensional data, especially image classification tasks

▪ you will be programming one tomorrow



1. Convolution 

i,j : pixel location

V: weight matrix of kernel
u: bias
Δ: kernel size

a,b: kernel indices
X: input

H: hidden or “latent” state

(not strictly a convolution, but a 
cross-correlation)



1. Convolution

i,j : pixel location

V: weight matrix of kernel
u: bias
Δ: kernel size

a,b: kernel indices
X: input

H: hidden or “latent” state

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-conv
olutional-neural-networks

https://docs.google.com/file/d/1kzhtdLoiSU4KpFhBAeBMMSq2pJDbS6u-/preview


1. Convolution

i,j : pixel location

V: weight matrix of kernel
u: bias
Δ: kernel size

a,b: kernel indices
X: input

H: hidden or “latent” state

Typically, there are multiple kernels V, and 
as a result H typically has three 
dimensions. Kernels are trained.

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-conv
olutional-neural-networks

https://docs.google.com/file/d/1kzhtdLoiSU4KpFhBAeBMMSq2pJDbS6u-/preview


How does a CNN learn?

convolutions input

https://towardsdatascience.com/exploring-feature-extraction-with-cnns-345125cefc9a



2. Pooling

A downsampling operation typically after the convolution layer

https://docs.google.com/file/d/17xHD7_IqMT-pzhF9pinEmW4i9kuEae0B/preview


Putting it all together



Deep learning for multi-year ENSO forecasts

Ham, Yoo-Geun, Jeong-Hwan Kim, and Jing-Jia 
Luo. "Deep learning for multi-year ENSO forecasts." 
Nature 573.7775 (2019): 568-572.

Ham, Yoo-Geun, Jeong-Hwan Kim, and Jing-Jia 
Luo. "Deep learning for multi-year ENSO forecasts." 
Nature 573.7775 (2019): 568-572.



Recurrent Neural Networks

▪ Used for sequential data: time series 
prediction, language processing

▪ memory mechanism

▪ problem: exploding or vanishing 
gradients during learning



Long short-term memory (LSTM)

Can learn what important data is, 
and remembers this data for a 
long time

Hidden State: Short term memory
Memory Cell: Long term memory

“Gated Recurrent Units (GRU)”: 
streamlined version of the LSTM



Different ways to employ them

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks



LSTM for rainfall-runoff modelling

Kratzert, F., Klotz, D., Brenner, C., Schulz, K., and Herrnegger, M.: Rainfall–runoff modelling using Long Short-Term Memory 
(LSTM) networks, Hydrol. Earth Syst. Sci., 22, 6005–6022, https://doi.org/10.5194/hess-22-6005-2018, 201



Graph Neural Networks

▪ Similar to CNNs, but for arbitrary structures
▪ Molecules, social networks, climate model 

grid, weather stations
▪ map your data to a graph: nodes, edges
▪ Used to predict node characteristics, edge 

characteristics, or even new graph structures

https://mpimet.mpg.de/forschung/modellierung



Graph Neural Networks: Message Passing

For a great introduction to GNNs: https://distill.pub/2021/gnn-intro/



GNNs for predicting heat waves

Li, Peiyuan, et al. "Regional heatwave prediction using Graph Neural 
Network and weather station data." Geophysical Research Letters 50.7 
(2023): e2023GL103405.



Break



State of the Art Deep Learning: Transformers

● Most (all?) large language models are based on the transformer architecture
● Vision Transformers for diverse vision tasks
● Core idea: Attention Mechanism
● Long Term memory
● Data is positionally encoded and embedded into tokens

○ Can handle any data (text, images, 4D data,...)
● Used to build “foundation models”

○ EU AI act: “AI model that is trained on broad data at scale, is designed for generality 
of output, and can be adapted to a wide range of distinctive tasks”.

● Further reading:
○ https://jalammar.github.io/illustrated-transformer/
○ Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

https://jalammar.github.io/illustrated-transformer/


Transformers: Atmorep

Lessig et al, under review at Nature
https://arxiv.org/abs/2308.13280, https://www.atmorep.org/ 

https://arxiv.org/abs/2308.13280
https://www.atmorep.org/


Autoencoders

▪ The input is transformed and it’s 
dimensionality reduced by an encoder

▪ The decoder tries to reconstruct the input
▪ the bottleneck is a lower dimensional 

representation of your data
▪ exploits underlying correlations among 

data
▪ Applications include compression, filtering, 

denoising, …
▪ Can consist of elements from different 

deep learning architectures (CNNs, 
Attention, GNNs,...)

https://towardsdatascience.com/introduction-to-autoencoders-7a47cf4ef14b



Denoising/Filtering with Autoencoders

▪ Numerical Simulations sometimes have 
unphysical artifacts that arise from the 
discretisation and the the numerical 
methods

▪ CNN-based autoencoder extracts the 
important features and filters the 
“random” noise

original    reconstructed

Raw and filtered zonal wind. Taken from an ongoing project at 
AWI with V. Sidorenko



Probabilistic Deep Learning

Common problems in deep learning:

▪ overfitting
▪ overconfidence

→ Probabilistic Approaches to deep learning can help

The main goal is not to be better than point-estimate methods, although this might be the case, 
but to provide an uncertainty estimate.

▪ Gaussian Processes
▪ Bayesian Deep Learning



Bayesian Deep Learning

▪ weights are stochastic

▪ the output is also stochastic and therefore 
allows an uncertainty estimate for the 
prediction

▪ weights and biases are sampled based on 
Bayes theorem using e.g. Markov-Chain 
Monte Carlo methods

Jospin, Laurent Valentin, et al. "Hands-on Bayesian neural 
networks—A tutorial for deep learning users." IEEE 
Computational Intelligence Magazine 17.2 (2022): 29-48.



Physics-Informed Deep Learning

▪ Idea: Force your Deep Learning model to conserve energy/mass or apply another 
physical constraint

▪ Typically achieved by
▪ constraining the model architecture
▪ modifying the loss function 

“Achieving Conservation of Energy in Neural Network Emulators for
Climate Modeling”,Beucler et al 2019, https://arxiv.org/abs/1906.06622



Coupling General Circulation Models with ML

Potential:

▪ Replace parameterisations that rely on empirical assumptions with ML-based 
relationships that are learned from observations.

▪ Replace computationally expensive components with ML-based model

Challanges:

▪ Efficient Technical implementation of python code into FORTRAN or C++
▪ Offline vs online behaviour of ML model
▪ Application to problems outside of training data



Simulating rain in ICON with a neural network trained on 
superdroplet simulations

Arnold, C., Sharma, S., Weigel, T., and Greenberg, D.: Efficient and Stable Coupling of the SuperdropNet Deep Learning-based Cloud 
Microphysics (v0.1.0) to the ICON Climate and Weather Model (v2.6.5), EGUsphere [preprint], 
https://doi.org/10.5194/egusphere-2023-2047, 2023. 



Deep Learning for Weather Prediction

Several deep learning models now beat the numerical weather forecast by ECMWF for several 
days. These models are purely based on machine learning and do not take any physical 
constraints into account.

▪ GraphCast by google (GNNs)

▪ Pangu-Weather by HUAWEI (Transformers)

▪ FourcastNet by NVIDIA (Vision Transformers, Fourier Neural Operators)

▪ …

check out https://sites.research.google/weatherbench/ for an overview

https://sites.research.google/weatherbench/


Google Graph Cast

https://www.youtube.com/watch?v=Q6fOlW-Y_Ss&t=13s

http://www.youtube.com/watch?v=Q6fOlW-Y_Ss


Google Graph Cast

▪ Does predictions in 6-hour timesteps
▪ Processing on graph structure
▪ Processor takes various spatial 

scales into consideration
▪ open source

Remi Lam et al., Learning skillful medium-range global weather 
forecasting. Science 382,1416-1421 (2023). 
DOI:10.1126/science.adi2336

https://doi.org/10.1126/science.adi2336


Deep Learning for Weather Prediction

Weatherbench:

https://sites.research.google/we
atherbench/



Benefits

▪ Accuracy

▪ Performance
▪ FOURCASTNET as example:
▪ Training: 16 hours wall-clock time on 64 Nvidia A100 GPUs
▪ Inference (forecasting): 24-hour 100-member ensemble forecast time reduced from 

984,000 to 12.4 node-seconds

→ factor 80000 speedup!
▪ extremely large ensembles possible (>10000)



The end of NWP? No (at least not yet)

▪ All ML models are trained on ERA5. A physically based training dataset is necessary

▪ no ML-model for high resolution, high quality regional forecasts

▪ Projections of future climate are currently not possible (what should the training data 
be?)



New Kid on the block:  NeuralGCM

preprint published 13 Nov 2023

https://arxiv.org/abs/2311.07222



Conclusion

▪ Fast moving science, state of the art changes every year

▪ Find what works best for you

▪ Play around with these tools and combine them



Conclusion

▪ Fast moving science, state of the art changes every year

▪ Find what works best for you

▪ Play around with these tools and combine them

Thank you.



Multilayer Perceptrons

Universal Approximation Theorem (Barren, 1993)

Any continuous function on a compact domain can be approximated by a neural network with 
only one hidden layer provided the activation functions used are bounded, continuous and 
monotonically increasing.

Possible in theory, but not feasible in practice.



Other practical things you will need

▪ Regularisation to combat Overfitting
▪ dropout layers
▪ weight decay
▪ …

▪ Hyperparameter Tuning
▪ Different Loss functions
▪ Preprocessing data

▪ shuffling
▪ normalising
▪ splitting into training, testing, validation datasets



Deep Learning for Weather Prediction



Already (kind-of) operational

https://charts.ecmwf.int/


