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Resources

= Dive into Deep Learning:
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https://d2l.ai/index.html C TE———— W
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= youtube ‘ s
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Mu Li, anp Alexander J. Smola Aurélien Géron



https://d2l.ai/index.html

What to expect

o Alook into the toolbox

o We won'’t be going deep into the math

e |t will be overwhelming

e Focus is on Deep Learning

e Examples from weather and climate science

e probably some overlap to earlier presentations

e break after around 40mins
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Outline

Machine Learning (but not deep learning)
Deep Learning:

Multilayer Perceptron

Convolutional Neural Networks

Recurrent Neural Networks

Transformers

Graph Neural Networks
Autoencoders
Probabilistic Deep Learning
Physics-Informed Deep Learning
Coupling general circulation models with ML model
Al weather prediction

¥ HELMHOLTZA|



Machine Learning (but not deep learning)

Artificial Intelligence
A science devoted to

making machines think Artificial Intelligence
and act like humans.

Machine Learning
Focuses on enabling
computers to perform
tasks without explicit
programming.

Machine Learning

Deep Learning

A subset of machine
learning based on
artificial neural networks.

https://flatironschool.com/blog/deep-learning-vs-machine-learning/
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Machine Learning (but not deep learning)

Artificial Intelligence
A science devoted to

making machines think Artificial Intelligence
and act like humans.

Feature extraction Classification

& K

A Output: “Tree”

Machine Learning
Focuses on enabling
computers to perform
tasks without explicit
programming.

Machine Learning

Feature extraction + Classification

Deep Learning

® &/ = A subset of machine
PPN R learning based on
XN Ao artificial neural networks.
@
https://www.baeldung.com/cs/machine-learning-vs-deep-learning https://flatironschool.com/blog/deep-learning-vs-machine-learning/
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Machine Learning (but not deep learning)

Linear Regression

Support Vector Machines (SVM) IO e

Random Forests T G Artificial Intelligence
k-means clustering

Principal Components Analysis (PCA) Foncres g

Machine Learning

computers to perform
tasks without explicit
programming.

Deep Learning

A subset of machine
learning based on

For many tasks, these algorithms are sufficient. artifioial neural networks.

https://flatironschool.com/blog/deep-learning-vs-machine-learning/
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Random Forest

= Arandom forest is an ensemble of =) Years <45 (1)

decision trees

= regression or classification e Hmmdss

= easy to train, works with little data =

= returns feature importance by design -> /
Interpretability and Explainability out of "mR"M” "mR""ms
the box! (_{ / \

= predicting convective downdrafts: = s fnma? e
https://agupubs.onlinelibrary.wiley.com/ \
doi/full/10.1029/2022MS003048 g f,?ff;‘ J

Predicting baseball player’s salary using average home runs
and years of experience
https://www.statology.org/random-forests/




Deep Learning




Multilayer Perceptrons

The “standard” neural net

“fully connected layers”, or “dense
layers”

calculate hidden state H using
weights (W) and biases (b) and
activation function

W: weight matrix
b: biases
sigma: nonlinear function

X: input vector
H: hidden or “latent” state
O: output

Output layer

Hidden layer

Input layer

H = o(XWY + b)),
0 =HW® 1 b®,
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Multilayer Perceptrons

Weights and biases are the

parameters that are “learned” Output layer
input x has “4 features”

The number of hidden layers and

the amount of neurons can be Hidden layer

chosen
WA1

Input layer

H = o(XWY + b)),
0 =HW® 1 b®,
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Multilayer Perceptrons

The “standard” neural net

“fully connected layers”, or “dense Output layer
layers”

Connections between nodes are

welg hts Hidden layer
Weights are the parameters that

are “learned”

input x has “4 features” Input layer
The number of hidden layers and

the amount of neurons can be

chosen

¥ HELMHOLTZA|




Multilayer Perceptrons

Nodes are calculated from the
previous layer’s nodes using the
weights, biases and activation
function

W: weight matrix
b: biases
sigma: nonlinear function

X: input vector
H: hidden or “latent” state
O: output

W, b are the trainable parameters

Output layer

Hidden layer

Input layer

H = o(XWY + b)),
0 =HW® 1 b®,

¥ HELMHOLTZA|




Multilayer Perceptrons

Output layer

Hidden layer

Input layer
Deep Learning is mostly just linear
Algebra and some Calculus! No need H= a(XW(l) + b(l)),
to be scared :) 0O =HW® 4 p?,
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Activation Functions

“Add non-linearity”. Neurons are activated (“they
fire”) like brain neurons

= Relu ReLU(z) = max(z, 0).

simple and good performance
behaves “well” during backpropagation

= Sigmoid singid(m)zm'

important for some architectures

sigmoid(x)
o
>

relu(x)
D

o
o
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Let’s go over this again...




12/46 A
<= DKRZ

Inputs
Source data fed into the neural network, with the goal of making a decision or prediction about the data.




By

13/46
<= DKRZ

Inputs

Source data fed into the neural network, with the goal of making a decision or prediction about the data.
The data is broken down into binary signals, to allow it to be processed by single neurons—for example an
image is input as individual pixels.

Training, Validation, Test Set

A set of outputs for which the correct outputs are known, which can be used to train the neural

networks.
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activation <= DKRZ
Inputs

‘ 0.6 !
ke Training, Validation, Test Set

Nodes, Weights, Biases




, 14/46 M
input a = DK

Inputs

Training, Validation, Test Set

Nodes, Weights, Biases

.~ Activation Function
Each neuron accepts part of the input and

passes it through the activation function.
Commonly used functions are the sigmoid < 0.3 ;

function, tanh and RelLu.
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<= DKRZ

Inputs

Training, Validation, Test Set

Nodes, Weights, Biases

,,,,,,

Activation
Function

iih Outputs
The output of the neural network can
be a real value between0Oand 1, a
boolean, or a discrete value (for
example, a category ID).



Questions

we’ll be needing this again...




Multilayer Perceptrons

A great visual introduction:

https://www.youtube.com/watch?v=aircAruvnKk&l
ist=PLZHQObOWTQDNUG6R1_67000Dx_ZCJB-3

pi

Sigmoid

@)
@
@
®
@)

a7
|4 » B[ ) 1557/18:39 - Recap >




T 0.6
Predicting surface heat fluxes
T 04
€
. . . 4
= Predicting surface heat fluxes using a Fha
neural network trained on observations <§ -
= input: wind speed, temperature,
1 _02 a z
RICha_rdson number_ -02 00 02 04 06
= two hidden layers with 64 neurons each (W'6')ops [Km 5711
= Top: Traditional Approach 0.6
Bottom: Neural Network = s
£
2 0.2
=
o
2 00
Munoz-Esparza, Domingo, et al. "On the Application of an Observations-Based 7
Machine Learning Parameterization of Surface Layer Fluxes Within an Atmospheric -0.217
Large-Eddy Simulation Model." Journal of Geophysical Research: Atmospheres -02 00 02 04 06
127.16 (2022): €2021JD036214. (W'6")ops [Km s71]
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Convolutional Neural Networks

= Multilayer Perceptrons do not account for data structure
= Convolutional Neural Networks solve this problem
= Popular for any 2-dimensional data, especially image classification tasks

= you will be programming one tomorrow

Input image Convolutions Pooling Fully Connected




1. Convolution

A A iI,j : pixel location
H];; =u+ Z Z [V]ap[X]ita,5+b- V: weight matrix of kernel
a=—Ab=—A u: bias

A: kernel size

a,b: kernel indices
X: input

H: hidden or “latent” state

ot Kermel Ouip (not strictly a convolution, but a
of[1]2 cross-correlation)
011 19|25
34|65 * =
2 |3 37|43
6|17 |8




1. Convolution
A A iI,j : pixel location
[H]i,j =u+ Z Z V] a,b[X]i+a,j+b- V: weight matrix of kernel
a=-Ab=-A u: bias
A: kernel size
e N a,b: kernel indices
= X: input
H: hidden or “latent” state
—s [

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-conv
olutional-neural-networks



https://docs.google.com/file/d/1kzhtdLoiSU4KpFhBAeBMMSq2pJDbS6u-/preview

1. Convolution

A A iI,j : pixel location
H];; =u+ Z Z [V]ap[X]ita,5+b- V: weight matrix of kernel
a=—Ab=—A u: bias

A: kernel size

a,b: kernel indices
X: input

H: hidden or “latent” state

Typically, there are multiple kernels V, and
as a result H typically has three
dimensions. Kernels are trained.

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-conv
olutional-neural-networks



https://docs.google.com/file/d/1kzhtdLoiSU4KpFhBAeBMMSq2pJDbS6u-/preview

How does a CNN learn?

convolutions

https://towardsdatascience.com/exploring-feature-extraction-with-cnns-345125cefc9a




2. Pooling

A downsampling operation typically after the convolution layer

-l max

.’

DL
2%
L
et

v’
.



https://docs.google.com/file/d/17xHD7_IqMT-pzhF9pinEmW4i9kuEae0B/preview

Putting it all together

. convolution pooling dense
convolution
pooling dense
L _ dense

2 |3 =

[0 2 e P

—— o 1 o

/ 1
1 6@14x14
- S2 feature map N

16@5x5
S4 feature map

28x28 image 6@28x28 16@10x10
C1 feature map C3 feature map




Deep learning for multi-year ENSO forecasts

Input layer

Convolutional
filter

FC layer
Convolutional MP layer 1 Convolutional MP layer 2  Convolutional
layer 1 layer 2 layer 3 Ew
/ / E Output layer
+ oN O
M 6| M 6| M 0| Nino3.4(+1
% 18 18 : J(t = 1-23 months)
o
a ——CNN —+-CanCM3 —+—CCSM3 —s— GFDL-aer04 —e— GFDL-FLOR-B01
0o = —e—SINTEX-F  ——CanCM4 —+—CCSM4 —+— GFDL-FLOR-A06
0.8}
- % o7l
-1.5 0.0 1.5 s
SST or HT anomaly (°C) g 0.6 -
5
O 05
Ham, Yoo-Geun, Jeong-Hwan Kim, and Jing-Jia 041 \
Luo. "Deep learning for multi-year ENSO forecasts." 03}
Nature 573.7775 (2019): 568-572. 12 8 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23

Forecast lead (months)
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Recurrent Neural Networks

= Used for sequential data: time series

o _ Output 1 Output 2 Output ... Output T
prediction, language processing
= memory mechanism I I I I
- problem: exploding or vanishin Hidden | _{ Hidden | |[reas
P ) p_ 9 ] 9 layers 1 layers 2 layers T
gradients during learning

.

Input 1 Input 2 Input ... Input 7




Long short-term memory (LSTM)

. . Memory cell
Can learn what important data is, internal sate C,
and remembers this data for a
long time
‘32?:‘ o °“;:’:‘?1

Hidden State: Short term memory q i a | |um| o[ |

. Hidden state
Memory Cell: Long term memory o - I{ o H
“Gated Recurrent Units (GRU)”: Input X,
streamlined version of the LSTM FC layer with

III activation function

Elementwise
operator , Copy r" Concatenate

I; = o(XiWy + H;_1Wy; + by),
Ft — O'(thxf -1 Ht_1th -+ bf),
Ot — o(xtho 5 Ht—lwho + bo)a




Different ways to employ them

One-to-man § A
Y Music generation

T,=1,T,>1
]
p— -
Many-to-one s ‘ ‘ ) -
a Tl = R s Sentiment classification
T.>1,T,=1 | ) ;
t t t
<> |p=2> L <Te>
g g §<Tu>
Many-to-man |
i Y a<%> — =5 s —'} Name entity recognition
T.=T, L )\ ) )
t t t
<> |gp<2> I <>

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
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LSTM for rainfall-runoff modelling

(a) e
30 —
ol 5
'; 25 c
E 20 é
o= C
o 15 8
(@)]
o ©
2 10 .g_
O O
v 5 )
e =t
0 (a1

—— Observed discharge W Rain
——— LSTM simulation HE Snow
—— RNN simulation

Kratzert, F., Klotz, D., Brenner, C., Schulz, K., and Herrnegger, M.: Rainfall-runoff modelling using Long Short-Term Memory
(LSTM) networks, Hydrol. Earth Syst. Sci., 22, 6005-6022, https://doi.org/10.5194/hess-22-6005-2018, 201
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Graph Neural Networks

= Similar to CNNs, but for arbitrary structures

= Molecules, social networks, climate model
grid, weather stations

= map your data to a graph: nodes, edges

= Used to predict node characteristics, edge
characteristics, or even new graph structures

https://mpimet.mpg.de/forschung/modellierung

RS e::e:e=e:=:s:=:—ssmm_zeey==" yemwotzar



Graph Neural Networks

: Message Passing

o 4 mmlnll =l

Aggregate information
from adjacent nodes

Transform
information

Layer N + 1

O o

Update graph with
new information

For a great introduction to GNNSs: https://distill.pub/2021/gnn-intro/




GNNs for predicting heat waves

—~

HW events o

~

@)

®—
8 \ Directed weight
@) \
r /U\ e
E N Self-weight
& } ' © ©
& Node

[0 mi |
~ 105°W )
@ tongn e Lk Li, Peiyuan, et al. "Regional heatwave prediction using Graph Neural
DOY . .
= I = Network and weather station data." Geophysical Research Letters 50.7
© - year -
b i e e e (2023): €2023GL103405.
o (K - )" year - ‘ ] |
© ” : . > -  —
g Kt year - k=10 i 5 ikaz /k';é-..
<< I 1
Input: Output:
o Meteorological variables o Occurrence of HW on K™ year k™ day
o HW flags to (k+ C,, — 1) day

o Day of year (DOY)
o Oceanic Nino Index (ONI) m




Break




State of the Art Deep Learning: Transformers

Most (all?) large language models are based on the transformer architecture
Vision Transformers for diverse vision tasks

Core idea: Attention Mechanism

Long Term memory

Data is positionally encoded and embedded into tokens

Can handle any data (text, images, 4D data,...)
Used to build “foundation models”

EU Al act: “Al model that is trained on broad data at scale, is designed for generality
of output, and can be adapted to a wide range of distinctive tasks”.

Further reading:
https://jalammar.qgithub.io/illustrated-transformer/

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

" HELMHOLTZAI


https://jalammar.github.io/illustrated-transformer/

Transformers: Atmorep

reanalysis

Impact analysis

W — Forecasting

A
[temperAfiire Tal Al
[divergsAte Jal al
vor!lclyv

— Climate projections Downscaling

S e e

MLP
MLP

Self-Attention
MLP
Self-Attention
Self-Attention

multiformer

Scientific insight ™ -

Lessig et al, under review at Nature
https://arxiv.org/abs/2308.13280, https://www.atmorep.org/



https://arxiv.org/abs/2308.13280
https://www.atmorep.org/

Autoencoders

= The input is transformed and it's
dimensionality reduced by an encoder
= The decoder tries to reconstruct the input

(1] (o)

= the bottleneck is a lower dimensional (1) (1 ) o (o )
representation of your data ONONo oo

= exploits underlying correlations among @ o (+ ) (1 ) (o)
data : g (1] (« ] o)

= Applications include compression, filtering, olo O N omo
denoising, ... Encode g °
(1) (o)

= Can consist of elements from different
deep learning architectures (CNNs,
Attention, GNNSs,...)

https://towardsdatascience.com/introduction-to-autoencoders-7a47cf4ef14b

RS e::e:e=e:=:s:=:—ssmm_zeey==" yemwotzar



Denoising/Filtering with Autoencoders

= Numerical Simulations sometimes have original reconstructed
unphysical artifacts that arise from the = I = I
discretisation and the the numerical
methods o _— .- -
- CNN-based autoencoder extracts the - - LIl - LD
important features and filters the oyl TR, o NS = M 10,
“random” noise - ol B
o S— b ol — b
s bl S Al §

Raw and filtered zonal wind. Taken from an ongoing project at
AWI with V. Sidorenko

RS e::e:e=e:=:s:=:—ssmm_zeey==" yemwotzar



Probabilistic Deep Learning

Common problems in deep learning:

overfitting
overconfidence

— Probabilistic Approaches to deep learning can help

The main goal is not to be better than point-estimate methods, although this might be the case,
but to provide an uncertainty estimate.

Gaussian Processes
Bayesian Deep Learning

HELMHOLTZ Al




Bayesian Deep Learning

= weights are stochastic

= the output is also stochastic and therefore // \\

allows an uncertainty estimate for the AN (PN Ve
prediction / / \

/\L
= weights and biases are sampled based on

Bayes theorem using e.g. Markov-Chain \\ /\\// \V/\ //
Monte Carlo methods 7 AL AL
VANV //\\/

Jospin, Laurent Valentin, et al. "Hands-on Bayesian neural
networks—A tutorial for deep learning users." IEEE
Computational Intelligence Magazine 17.2 (2022). 29-48.

RS e::e:e=e:=:s:=:—ssmm_zeey==" yemwotzar
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Physics-Informed Deep Learning

= ldea: Force your Deep Learning model to conserve energy/mass or apply another
physical constraint
= Typically achieved by

= constraining the model architecture
= modifying the loss function

(a) NNU (+0K) (b) NNL(a =0.01) (+0K)

Latitude [°]

L (a) = aP (z,ynn) + (1 — a) MSE (y, ynn)

“Achieving Conservation of Energy in Neural Network Emulators for
Climate Modeling”,Beucler et al 2019, https://arxiv.org/abs/1906.06622




Coupling General Circulation Models with ML

Potential:

Replace parameterisations that rely on empirical assumptions with ML-based
relationships that are learned from observations.
Replace computationally expensive components with ML-based model

Challanges:

Efficient Technical implementation of python code into FORTRAN or C++
Offline vs online behaviour of ML model
Application to problems outside of training data

¥ HELMHOLTZA|



Simulating rain in ICON with a neural network trained on
superdroplet simulations

~N
i \ = Bulk moment
1
£ \ == SuperdropNet
.
nproma grid cells @)} \
on one thread ~ 1 I O
Cloud microphysics ~
C
process - —
[ Two moment scheme ] @@®®  atmospheric levels ©
sequentially for — 0 5
nproma grid cells [t .
©
Q
SuperDropNet ] E
0.0

Time (mins)

Arnold, C., Sharma, S., Weigel, T., and Greenberg, D.: Efficient and Stable Coupling of the SuperdropNet Deep Learning-based Cloud
Microphysics (v0.1.0) to the ICON Climate and Weather Model (v2.6.5), EGUsphere [preprint],
https://doi.org/10.5194/egusphere-2023-2047, 2023.
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Deep Learning for Weather Prediction

Several deep learning models now beat the numerical weather forecast by ECMWF for several
days. These models are purely based on machine learning and do not take any physical

constraints into account.
GraphCast by google (GNNSs)
Pangu-Weather by HUAWEI (Transformers)

FourcastNet by NVIDIA (Vision Transformers, Fourier Neural Operators)

check out https://sites.research.google/weatherbench/ for an overview

¥ HELMHOLTZA|


https://sites.research.google/weatherbench/

Google Graph Cast

https://www.youtube.com/watch?v=Q6fOIW-Y_Ss&t=13s P e



http://www.youtube.com/watch?v=Q6fOlW-Y_Ss

A Input weather state B Predict the next state C Roll out a forecast

Google Graph Cast

= Does predictions in 6-hour timesteps

= Processing on graph structure

= Processor takes various spatial
scales into consideration

= open source

GraphCast

Remi Lam et al., Learning skillful medium-range global weather
forecasting. Science 382,1416-1421 (2023).
DOI:10.1126/science.adi2336

RS e::e:e=e:=:s:=:—ssmm_zeey==" yemwotzar



https://doi.org/10.1126/science.adi2336

Deep Learning for Weather Prediction

Pressure Temperature Humidity Wind Vector
.
S0P oopoenta HSE KP?) _ 850nPtmperaure ASE(KI 700w e hmidy S oAg)_850nawidvecr AHSE () Weatherbench
.

IFSHRES | 42 135 304 521 801 062 116 182 263 363 |055 096 127 153 181 | 169 329 520 7.11 9.14

'El - EEE - EEEE - SRR https://sites.research.google/we
ERAS Forecasts 43 . 316 534 811 0.59 1.19 1.87 2.68 3.66 0,53 1.01 133 159 186 163 340 537 7.26 9.23
atherbench/

- 136 300 510 785

IFS ENS Mean = 42 132 .

Physical models

9 174 254 355

Pangu-Weather (oper.)

GraphCast (oper.)
Keisler (2022)
Pangu-Weather

GraphCast = 39

ML / hybrid models

FuXi

SphericalCNN

.3.33 5.17 7.01 8.98
NeuralGCM 0.7

e v o 5 - G -~ S
v, I~ O W - EEEE

T T 1 Ll 1 1 T - T T T 1 T T T 1

5 5 5 5 7 10

'
10
Lead time [days] Lead time [days] Lead time [days] Lead time [days]

-50 =20 -10 -5 -2 -1 1 2 5 10 20 50
Better «— % difference in RMSE vs IFS HRES — Worse
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Benefits

Accuracy

Performance

FOURCASTNET as example:
Training: 16 hours wall-clock time on 64 Nvidia A100 GPUs

Inference (forecasting): 24-hour 100-member ensemble forecast time reduced from
984,000 to 12.4 node-seconds

— factor 80000 speedup!
extremely large ensembles possible (>10000)

¥ HELMHOLTZA|



The end of NWP? No (at least not yet)

= All ML models are trained on ERAS. A physically based training dataset is necessary
= no ML-model for high resolution, high quality regional forecasts

= Projections of future climate are currently not possible (what should the training data
be?)

HELMHOLTZ Al



New Kid on the block: NeuralGCM

(a) (b)
Forcings F, /

Learned physics \

Learned

Learned physics Neural
network

(/

———— N
W b
Inputs | o ! L2
p l;‘\\(‘ i Ye &
\\\X\\\ = 18
' ®
[}
T &
Dynamic Physics
tendencies tendencies

o

Physics

tendencias/

Outputs

Sl .
4 /,7;', ) A &
f:\((&@’ dociver N
N S P

Fig. 1 Structure of the NeuralGCM model. (a) Overall model structure, showing how forcings Fy,
noise z; (for stochastic models), and inputs y; are encoded into the model state z;. Model state is
fed into the dynamical core, and alongside forcings and noise into the learned physics module. This
produces tendencies (rates of change) used by an implicit-explicit ODE solver to advance the state in
time. The new model state z;4; can then be fed back into another time step, or decoded into model
predictions. (b) Inset of the learned physics module, which feeds data for individual columns of the
atmosphere into a neural network used to produce physics tendencies in that vertical column.

RS e::e:e=e:=:s:=:—ssmm_zeey==" yemwotzar

preprint published 13 Nov 2023
https://arxiv.org/abs/2311.07222



Conclusion

= Fast moving science, state of the art changes every year

= Find what works best for you

= Play around with these tools and combine them




Conclusion

= Fast moving science, state of the art changes every year

= Find what works best for you

= Play around with these tools and combine them

Thank you.
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Multilayer Perceptrons

Universal Approximation Theorem (Barren, 1993)

Any continuous function on a compact domain can be approximated by a neural network with
only one hidden layer provided the activation functions used are bounded, continuous and
monotonically increasing.

Possible in theory, but not feasible in practice.

HELMHOLTZ Al



Other practical things you will need

Regularisation to combat Overfitting

= dropout layers
= weight decay

Hyperparameter Tuning
Different Loss functions
Preprocessing data

= shuffling
= normalising
= splitting into training, testing, validation datasets

HELMHOLTZ Al



Deep Learning for Weather Prediction

2m Temperature Surface Pressure 10m Wind Speed Precipitation
RMSE [K] Mean surface-level pressure RMSE [Pa] RMSE [mys] 24h precipitation SEEPS

IFS HRES | 0.51 0.87 1.33 1.88 2.56 60 149 309 506 748 | 0.70 1.27 192 249 3.00 |0.20 0.33 0.46 0.60 0.76

o O O 595 o

130 196 252 3.01

IFS ENS Mean 62 146 280

Physical models

575 BIbSY BS20N EHTON 755

ERAS Forecasts

59 147 302 1493 | 732 | (f0Z2) 1.22 '1.84 '2.41 2.95

4 2.90 . 0.32 ¢

Pangu-Weather .0.91 139 197 268 58 0 37 292

« o QI

Pangu-Weather (oper.)

GraphCast (oper.) 0.72

GraphCast

ML / hybrid models

FuXi 3.02
s [ - EEEE - HEE -5 DN
1 1 1 1 1 1 1 1 1 ) 1 1 1 ) L} T [ 1 0 1
1 3 5 7 10 1 3 5 7 10 1 3 5 7 10 1 3 5 7 10
Lead time [days] Lead time [days] Lead time [days] Lead time [days]

-50 -20 -10 -5 -2 -1 1 2 5 10 20 50
Better «— % difference in RMSE vs IFS HRES — Worse
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Already (kind-of) operational

Latest forecast

Experimental: AIFS (ECMWF) ML model:
Mean sea level pressure and 850 hPa wind
speed

AIFS (ECMWF): a deep leamning-based system
developed by ECMWF It is iniialised with ECMWF
HRES analysis. AIFS operates at 1° resolution

Latest forecast =

Experimental: FourCastNet ML model:
Mean sea level pressure and 850 hPa wind
speed

FourCastNet v2-smali:a deep learning-based system
developed by NVIDIA in collaboration with researchers.
at several US universities.It is initialised with ECMWF
HRES analysis. FourCastNet operates at 0.25'
resolution.

Latest forecast =

Experimental: FuXi ML model: Mean sea
level pressure and 850 hPa wind speed

FuXi: a deep learning-based system developed by
researchers at Fudan Universiy. It is iniialised with
ECMWF HRES analysis. Fuxi operates at 0.25deg
resolution.

Latest forecast =

Experimental: GraphCast ML model: Mean
sea level pressure and 850 hPa wind
speed

GraphCast (Google DeepMind): a deep learing-based
system developed by Google DeepMind.It is initialised
with ECMWF HRES analysis. GraphCast operates at
0.25° resolution.

Latest forecast =
Experimental: Pangu-Weather ML model:
Mean sea level pressure and 850 hPa wind
speed

Pangu-Weather: a deep learning-based system
developed by Ht Itis initialised with ECMWF
HRES analysis. Pangu-Weather operates at 0.25'
resolution.

Latest forecast =
Experimental: AIFS (ECMWF) ML model:

500 hPa geopotential height and 850
hPa temperature

AIFS (ECMWF): a deep leamning-based system

developed by ECMWF. It Is Initiaised with ECMWF
HRES analysis. AIFS operates at 1° resolution

https://charts.ecmwf.int/

Latest forecast =

Experimental: FourCastNet ML model: 500
hPa geopotential height and 850
hPa temperature

FourCastNet v2-small:a deep learning-based system
developed by NVIDIA in collaboration with researchers
at several US universities.t s Initialised with ECMWF
HRES analysis. FourCastNet operates at 0.25
resolution.

Latest forecast =
Experimental: FuXi ML model: 500 hPa

geopotential height and 850
hPa temperature

FuXi: a deep learning-based system developed by
researchers at Fudan University. It is initialised with
EGMWF HRES analysis. FuXi operates at 0.25deg
resolution.




