
Python core language part 2
Content

You will learn how to:

• Copy objects with copy and deepcopy

• Crunch numbers with basic operators and math functions

• Make decisions with conditions

• Let the computer do the work with loops

• Make your life easy with list comprehensions

Copy Objects

The difference between shallow and deep copying is only relevant for compound

objects (objects that contain other objects, like lists or class instances):

• A shallow copy constructs a new compound object and then (to the extent

possible) inserts references into it to the objects found in the original.

• A deep copy constructs a new compound object and then, recursively, inserts

copies into it of the objects found in the original.

The id() method returns a unique integer (identity) of an object.

140737019855040

Shallow Copy

[[1, 2, 3], ['one', 'two', 'three']]

get formating done automatically according to style `black`
#%load_ext lab_black

import copy

a = [1, 2, 3]
b = ['one', 'two', 'three']
c = [a, b]

id(c)

c_copy = copy.copy(c)

c_copy

print(id(c_copy)==id(c))

file:///Users/marco/Downloads/python_core_language_part2.html#copy
file:///Users/marco/Downloads/python_core_language_part2.html#copy
file:///Users/marco/Downloads/python_core_language_part2.html#operators
file:///Users/marco/Downloads/python_core_language_part2.html#operators
file:///Users/marco/Downloads/python_core_language_part2.html#conditions
file:///Users/marco/Downloads/python_core_language_part2.html#conditions
file:///Users/marco/Downloads/python_core_language_part2.html#loops
file:///Users/marco/Downloads/python_core_language_part2.html#loops
file:///Users/marco/Downloads/python_core_language_part2.html#listc
file:///Users/marco/Downloads/python_core_language_part2.html#listc

False

140737019854464

140737019854464

True

Deep Copy

False

False

Exercise

1. Can you create a new object with the assign statement (new_object =
old_object)?

2. Create a list with several items and create a copy with .copy and .deepcopy
3. Can you illustrate the difference between these two operations?

True

No, it's not a new object.

repeat example

id(c[0])

id(c_copy[0])

print(id(c_copy[0])==id(c[0]))

c_deepcopy = copy.deepcopy(c)

print(id(c_deepcopy)==id(c))

print(id(c_deepcopy[0])==id(c[0]))

1.
new_object = c
id(new_object) == id(c)

2.

3.

change the original c
c[1][2] = 'change'

see how c_copy change
print(c_copy)

see how c_deepcopy change
print(c_deepcopy)

[[1, 2, 3], ['one', 'two', 'change']]
[[1, 2, 3], ['one', 'two', 'three']]

Basic Operators and Math Functions

Basic mathematical operators are:

• + addition

• - substraction

• * multiplication

• / division

Additionally you can use Python's math functions.

import math
math.degrees(math.pi)

180.0

All functions can be found in the Python docs.

Exercise

1. Perform an arbitrary calculation, which includes an addition, substraction,

mulitplication and division.

2. What happens if you add two string variables?

3. Can you multiply a string with an integer? If yes, what will happen?

4. Have a look at the math functions. Chose three of them and include them in an

arbitrary calculation.

5.857142857142858

'sting 1 string 2'

'StringStringString'

0.5253219888177297

1.
3+4*5/7

2.
"sting 1 " + "string 2"

3.
"String" * 3

4.
import math

math.cos(45)

https://docs.python.org/3/library/math.html
https://docs.python.org/3/library/math.html

True

Conditions

• Python uses Boolean operators to evaluate conditions

• Logical and comparison operators allow building complex Boolean expressions

• Comparison operators are: == , >= , <= , > , < and !=
• Logical operators are: not , and and or
• If the result of an if expression is True, the condition is fulfilled and the if

statement will be executed

Syntax:

if(expression):
statement_1
statement_2
[...]

elif(expression):
statement_3

else:
statement_4
[…]

Exercise

What will happen? Please, only use pen and paper.

a = 1.
b = -3.
c = 'Dog'
if(a <= b and not b == c or a >= b):

print("We are learning Python.")
else:

print("We are not learning Python.")

math.isfinite(math.sinh(78*math.pi))

a <= b and not b == c or a >= b

1. first resolve boolean operators

False and not False or True

2. resolve not

False and True or True

3. resolve and

False or True

4. resolve or

True

We are learning Python.

Loops

for loops are used when a block of code needs to be repeated for a fixed number

of time.

Syntax:

for item in sequence
statement_1
statement_2
[...]

Hello
world
!

Confirm by running code

a = 1.
b = -3.
c = 'Dog'
if(a <= b and not b == c or a >= b):

print("We are learning Python.")
else:

print("We are not learning Python.")

my_list = ["Hello", "world", "!"]

Example 1
for thing in my_list:

print(thing)

Example 2
for number in range(0, 4):

print(number)

0
1
2
3

3

Python’s zip() function allows you to iterate in parallel over two or more iterables.

Fruit: apple
Vegetable: carrot
Fruit: banana
Vegetable: potato
Fruit: peach
Vegetable: cabage
Fruit: mango
Vegetable: tomato

With enumerate() Python gives you the counter and the value of the iterable at

the same time.

0 apple
1 banana
2 peach
3 mango

Exercise

Sum up all numbers from 1 to 100 by using a for loop. This problem is also know as

Gauß formula.

5050

number

fruit = ["apple", "banana", "peach", "mango"]
vegetable = ["carrot", "potato", "cabage", "tomato"]

for f, v in zip(fruit, vegetable):
print('Fruit: ', f)
print('Vegetable: ', v)

for count, value in enumerate(fruit):
print(count, value)

Exercise

sum1=0

for number in range(1, 101):
sum1=sum1+number

print(sum1)

The while loop is another type of loop.

while (expression):
statement_1
statement_2
...

The block of code will be executed as long the expression is true.

Hint:

Make sure that the condition can be fulfilled. Otherwise the loop will run forever.

0
1
2
3
4
5
6
7
8
9
10

List comprehensions

List comprehensions are an easy way to apply a function to each entry of your list or

to filter your list, the result is again a list. The general syntax looks like this:

new_list = [expression for item in old_iterable if condition]

The advantage of this construct is its brevity, but it impedes the code readability. The

important thing about list comprehension is to be able to recognise it.

[1, 2, 3, 4]

Add 1 to each list item.

[2, 3, 4, 5]

Get a filtered list, in which are only odd values from a

x = 0
while x<=10:

print(x)
x += 1 # same as x = x +1

a = [1,2,3,4]
print(a)

b = [xz + 1 for xz in a]
print(b)

[1, 3]

List comprehensions can be nested to reflect a nested loop. It requires less typing

but also becomes harder to read.

[12, 14, 32, 34]

[12, 14, 32, 34]

Using the analogy of the nested loop we can use nested list comprehension to get a

flat list of a nested list.

[[1, 2, 3], [4, 5], [6]]

[1, 2, 3, 4, 5, 6]

Exercise

Create a list with a few numbers and square each entry via list comprehension.

[4, 16, 36, 64, 100, 144]

[1.0, 4.0, 9.0, 16.0, 25.0]

c = [x for x in a if x % 2 == 1]
print(c)

d1 = []
for x in c:

for y in a:
if y % 2 == 0:

d1.append(10*x+y)
print(d1)

d2 = [10*x+y for x in c for y in a if y%2 == 0]
print(d2)

nested_list = [[1,2,3],[4,5],[6]]
print(nested_list)

flat_list = [x for sublist in nested_list for x in sublist]
print(flat_list)

Exercise variant a

example=[2,4,6,8,10,12]

output_list=[ff*ff for ff in example]
print(output_list)

Exercise variant b
import math
my_list = [1, 2, 3, 4, 5]
new_list = [math.pow(gg,2) for gg in my_list]
new_list

[9, 36, 49, 81]

Exercise variant c
example2 = [3, 6, 7, 9]
output2 = [x**2 for x in example2]
output2

