Introduction to Linux system

You should be able to navigate a system on a command line level. Especially
in HPC you should not count on the existence of GUIs. Even though we will
do all exercises in Jupyter Hub you still need to navigate the command line for
setting up everything. And it does no harm to know how to use the command
line ;)

Side note: Windows does offer its own command line (CMD, Powershell), but
we will not cover this. If you want to stay with Windows and work locally you
can give WSL a try.

There are different kinds of commands you can use within your terminal: shell
builtins and programs. But for now we can ignore this distinction. It’s nice to
know that the distinction exists but you do not need to worry about it. And:
Be careful about case sensitivity.

Tip: If you want to cancel the execution of any command, just press ctrl + ¢
to abort it or ctrl + d to terminate your current shell.

Basics

The basic commands allow the general navigation within the command line. We
will discuss the man command in detail and will spare details with the following
commands. You can look them up on their own man page.

man pages

You want to know what a command does? Which flags are available? Which
similar/associated tools exist? Look it up in the man(ual) page! It has nearly
everything you need to know.

Most commands have a man page, even the man command itself. Executing man
man gives you a short manual on how to use man.

For example, you want to know, what top does? Just look it up in the man
page: man top.
The structure of man pages is always similar. Usually it starts with three

sections: 1. NAME 2. SYNOPSIS 3. DESCRIPTION

The synopsis tells you, how you call the command (which options are
required/optional, which flags are available).

Flags allow to modify how a command is executed, each command may have its
own set. Very often there are two kinds of flags: 1. abbreviated (e.g. 1s -a) 2.
written out (e.g. 1s --all)

It does not matter, which you use. Writing flags out costs more time but helps
to remember, how the execution is modified. Flags can be combined, if you use

https://docs.microsoft.com/en-us/windows/wsl/
https://www.gnu.org/software/bash/manual/html_node/Shell-Builtin-Commands.html
https://www.gnu.org/software/bash/manual/html_node/Shell-Builtin-Commands.html

sde NAME, SYNOPSIS, CONFIGURATION, DESCRIPTION, OPTIONS, EXIT STATUS, RETURN VALUE, ERRORS, ENVIRONMENT, FILES, VERSIONS, CONFORMING TO, NOTES, BUGS, EXAMPLE, AUTHORS,

Figure 1: Output of man man

the abbreviated version, they can even be merged together. Instead of writing
mkdir --parents --verbose foo you could also write mkdir -pv foo.

If you want to know, what the effect of a specific flag is, you can look it up in
the description section. Since those can be rather large, you can also search for
a flag (which might feel unusual at first). To search for something, press /, type
in the expression you want to search for and hit ENTER. You now can see the
first found occurrence. Pressing n or N allows you to jump to the next/prior
occurrence. To leave the man pages, press q.

Note: Shell builtins do not have their own man page. Instead you are redi-
rected to the man page of BASH_BUILTINS, where all builtins are collected and
explained.

pwd

Print the path of your current working directory.
Interesting flags: - -P: Resolve symlinks
Example:

$ pwd

/home/username

Is

List the content of a directory. If a path is omitted, the content of the current
working directory is shown; files are sorted alphabetically by default.

Interesting flags: - -1: list files and show additional information like permissions,
owner, file size (bytes) and modification time. - -h: Eases reading the file size
(e.g. if using -1) by using suffixes like 1K, 234M or 2G. - -a: Show hidden files
(prefixed with a dot) - -R: List subdirectories recursively - r: Reverse order of
listed files - t: Sort by time

Example:
$ 1s

Documents Downloads tmp

$ 1s -a
Documents Downloads tmp .venv

$ 1s -1 Downloads

-IW-r--r——. 1 user user 48369718 Jul 6 2020 cats.mp4d
drwxr-xr-x. 2 user user 4096 Jul 6 2020 videos
Wildcards

Wildcards are handy to match several files without having to write them out all
together. A wildcard is a placeholder for no/one/several characters. They can
be combined in complex patterns, have a look at this link.

The most important ones are the following: - ?7: Any single character - *: any
number of characters (including zero) - \: Escape characters, which could be
interpreted as wildcard

Example:
$ 1s

aa.txt ab.csv Dbc.txt

$ 1ls *xbx
ab.csv bc.txt

$ 1s 7bx

ab.csv

tree

Display contents of directories like a tree

Interesting flags: - —d: List only directories - -L level: Max display depth
Example:

$ tree -L 1/
/

bin -> usr/bin

https://tldp.org/LDP/GNU-Linux-Tools-Summary/html/x11655.htm

boot

dev

etc

home

1ib -> usr/lib
1ib64 -> usr/1ib64
lost+found
media

mnt

opt

proc

root

run

sbin -> usr/sbin
sTrv

sys

tmp

usr

var

mkdir

Create a new directory.

Interesting flags: - —p: Parent directories are created if they do not exist, yet
Example

$ 1s -a

$ mkdir foo

$ 1s
foo

$ mkdir bar/baz
mkdir: cannot create directory ‘bar/baz’: No such file or directory

$ mkdir -p bar/baz
$ tree
bar

baz
foo

cd

Change the directory to dir. If dir is omitted, the value of $HOME is used
(which points usually to the user’s home directory). You can use absolute or
relative directory paths. There are two special directories: . (current directory)
and .. (parent directory):

Example

$ pwd
/home/user

$ 1s
bar foo

$ cd bar

$ pwd
/home/user/bar

$ cd ..

$ pwd
/home/user

$ cd bar/..

$ pwd
/home/user

$ cd bar/./.

$ pwd
/home/user/bar

$ cd

$ pwd

/home/user

mv

Rename or move a file

Example

$ 1s -1
drwxr-xr-x. 4 user user 4.0K Oct 22 11:54 bar

drwxr-xr-x. 4 user user 4.0K Oct 22 11:54 foo
$ mv foo bar/foo2
$ tree

bar
baz
foo2

cp

Copy a file

Interesting flags: - -r: Copy directory recursively
Example:

$ cp bar bar2

cp: -r not specified; omitting directory 'bar'
$ cp -r bar bar2

$ tree

bar
baz
foo2
bar2
baz
foo2

rm

Delete files. Pay attention, what you delete! Using rm immediately deletes files,
there is no trash bin! Especially using wildcards like * can be dangerous if
you do not pay close attention! You could test your command call by replacing
rm with 1s first to see, which files would be deleted.

Deleting systemically relevant directories or files could damage your
system irreversibly.

Interesting flags: - —-f: Force removal, missing files are ignored - -i: Ask before
every removal of a file - -r: Remove directory and its contents recursively (a
directory cannot be removed if neither -r nor -d is used)

Example:

$ tree

bar
baz
foo2
bar2
baz
foo2

$ rm bar
rm: cannot remove 'bar': Is a directory

$ rm -r bar
$ tree

bar?2
baz
foo2

Piping

The shell offers some comfort features: redirection and piping. We will not cover
redirection but give a short introduction into piping.

To use the output of a program as input of a second program, the output of
the first program can be piped into the second program. To do this, you just
need to connect both programs with the pipe (1) operator (on german keyboard
layout between your shift key and y key).

To scroll through a large output, you could pipe it to 1less. Then you can scroll
through the output with your arrow keys. Press q to exit this view.

If you are just interested into the first/last 10 lines you can pipe it to head/tail
(providing -n NUMBER sets the number of lines to be shown).

Example

$ 1s -1R / | head

ls: cannot open directory '/boot/efi'/:

total 64

1rwXrwxrwx. 1 root root 7 Jan 26 2021 bin -> usr/bin
dr-xr-xr-x. 7 root root 4096 Oct 23 10:02 boot

: Permission denieddrwxr-xr-x. 24 root root 4300 Oct 25 08:31 dev

drwxr-xr-x. 204 root root 12288 Oct 25 08:32 etc

drwxr-xr-x. 4 root root 4096 Jan 26 2021 home

1rwXrwxrwx. 1 root root 7 Jan 26 2021 1ib -> usr/lib
1rwXrwxrwx. 1 root root 9 Jan 26 2021 1ib64 -> usr/lib64
drwx--—---- 2 root root 16384 Apr 26 2019 lost+found

$ 1s -1R /usr/bin |tail -n 3

-rwxr-xr-x. 1 root root 28672 Jan 26 2021 tetgen_to_cgns
-rwxr-xr-x. 1 root root 78496 Jan 26 2021 update_ngon
-rwxr-xr-x. 1 root root 45600 Jan 26 2021 vgrid_to_cgns

Additional material regarding piping and redirection is available here

history

Your input on the command line are stored within a (size-limited) history file.
To print it to your terminal, just execute history. To ease handling the whole
history output, you can pipe it to less. This command becomes handy, if you
know, you already did something but forgot how you did it. If it is still part of
your shell history, you can then search for it.

cat

cat is used to print the content of a file to the command line.
Example:

$ echo "Hello World" > foo.txt

$ cat foo.txt
Hello World

chmod

To change the permissions of any file (read, write, execute) you can use chmod.
Since this is an extensive topic, we just reference material.

Tip: To enter a directory, it needs to have its execute permission set.

Environment variables

Environment variables are names with an associated stored value. They can be
used by applications, which are executed in the same (sub-)shell and are very
handy for scripting. The name is case-sensitive, it’s good practice to use upper
case names only.

The content of a environment variable can be accessed by prepending a dollar
sign $. To print it to the shell you can use echo, to unset it again you can use
unset.

There are three ways to set an environment variable: - KEY=value - KEY="Some
other value" - KEY=valuel:value2

Examples:

https://ryanstutorials.net/linuxtutorial/piping.php
https://www.howtogeek.com/437958/how-to-use-the-chmod-command-on-linux/
https://linuxize.com/post/how-to-set-and-list-environment-variables-in-linux/

$ echo $FOO

$ FOO=test

$echo $FOO0

test

$ unset FOO

$echo $FOO0

If the value shall be accessible within a subshell, the environment variable needs
to be exported first. For example this is needed, if it shall be used in a shell
script, which is executed from the shell. Without exporting the variable you can
achieve the same by prepending setting the environment variable on the same
line like the script call.

Examples:

$ cat test.sh
echo Hello $F00

$ bash test.sh
Hello

$ FOO=world bash test.sh
Hello world

$ export FOO

$ bash test.sh
Hello world

To get an overview of all exported environment variables, which are currently
set within you shell, you can use env.

There are some environment variables, which are alredy set. Be cautious to not
unset those, as this could mess with your work environment.

$PATH: The shell looks for executables within those path’. If an executable
does not reside within such a path, it can only be executed by using its
complete absolute path

$USER: Your username

$HOME: Absolute path of your home directory

$PWD: Absolute path to your working directory. Can be used to list files
with their absolute path

1s -d $PWD/bar2/*
/home/user/tmp/test/bar2/baz /home/user/tmp/test/bar2/foo2

SSH

ssh is a rather complex topic, therefore we refer to DKRZ material, where also
the public key procedure for Levante is described.

In the most simple case, you just execute ssh with your username, which is
attached with an @ symbol to the target hostname or -IP.

Example:

$ ssh user@levante.dkrz.de
user@levante.dkrz.de's password:
Permission denied, please try again.
user@levante.dkrz.de's password:
[user@levanteO ~]1$

Based on ssh there is the possibility to copy data from/to any host from/to you
local machine via scp. The syntax is simply scp source target.

Interesting flags: - -r: Recursively copy entire directory - -o: Allows to pass
options to the ssh backend

Example:

$ scp local_file.txt user@levante.dkrz.de:

local_file.txt 100%
exit

Type exit or press ctrl + d to close your current (sub-)shell.

More docu

¢ Basic Unix introduction
e Bash Scripting Guide

10

195

45.9KB/s

00:00

https://docs.dkrz.de/doc/levante/access-and-environment.html#ssh-login
https://linuxize.com/post/how-to-use-scp-command-to-securely-transfer-files/
https://becksteinlab.physics.asu.edu/pages/unix/IntroUnix/
https://tldp.org/LDP/abs/html/

	Introduction to Linux system
	Basics
	man pages
	pwd
	ls
	Wildcards
	tree
	mkdir
	cd
	mv
	cp
	rm
	Piping
	history
	cat
	chmod
	Environment variables
	SSH
	exit

	More docu

