
Python core language part 1
Python is an Interpreted, high-level, general-purpose programming language

• Interpreted: source code executes directly

• High-level: strong abstraction from the details of the computer

• General-purpose: widest variety of applications

• Programming language: language which holds a set of instructions that produce

various kinds of output

Content

You will:

• Write your first line of code

• Understand the syntax

• Learn about variables ...

• ... and data types

• Work with strings

• Create and use lists, tuples and sets

• Dive into dictionaries

Your first Line of Code

Simply type the follwing in the empty cell below and execute the code. You execute

the code by pressing the Control + Enter key or click the Run button above.

print("Hello world.")

Anything
another level

get formating done automatically according to style `black`
#%load_ext lab_black

Exercise
print("Anything")
print("another level")

file:///Users/marco/Downloads/python_core_language_part1.html#first_line
file:///Users/marco/Downloads/python_core_language_part1.html#first_line
file:///Users/marco/Downloads/python_core_language_part1.html#syntax
file:///Users/marco/Downloads/python_core_language_part1.html#syntax
file:///Users/marco/Downloads/python_core_language_part1.html#vars
file:///Users/marco/Downloads/python_core_language_part1.html#vars
file:///Users/marco/Downloads/python_core_language_part1.html#types
file:///Users/marco/Downloads/python_core_language_part1.html#types
file:///Users/marco/Downloads/python_core_language_part1.html#strings
file:///Users/marco/Downloads/python_core_language_part1.html#strings
file:///Users/marco/Downloads/python_core_language_part1.html#lists
file:///Users/marco/Downloads/python_core_language_part1.html#lists
file:///Users/marco/Downloads/python_core_language_part1.html#dicts
file:///Users/marco/Downloads/python_core_language_part1.html#dicts

Syntax

• Python is cASe SensItiVe.

Print("Hello world.")
will not work.

• You can comment a line of code with # .

Commented lines will not be executed. They are important
features for the human reader of the code.

• In Python, blocks of code are expressed by their indentation. This keeps the

code clean and tidy.

print("one indentation level")
print("this indentation level again")

print("another indentation level")
will lead to IndentationError: unexpected indent

• If a line of code becomes to large, you can simply contiue in the following line

print("Python is an interpreted, high-level and general-purpose
programming language. "

"Python's design philosophy emphasizes code readability
with its notable use of significant "

"indentation. Its language constructs and object-oriented
approach aim to help programmers "

"write clear, logical code for small and large-scale
projects.")

Exercise

Play around with different indentation levels and divide a line of code over two lines.

Comment your code using # .

Python is an interpreted, high-level and general-purpose programming lang
uage. Python's design philosophy emphasizes code readability with its not
able use of significant indentation. Its language constructs and object-o
riented approach aim to help programmers write clear, logical code for sm
all and large-scale projects.

Variables

Exercise
print("Python is an interpreted, high-level and general-purpose programming language. "

"Python's design philosophy emphasizes code readability with its notable use of sign
"indentation. Its language constructs and object-oriented approach aim to help progr
"write clear, logical code for small and large-scale projects.")

A variable is a symbolic name, which contains information referred to as a value. A

variable is created with an "assignment" equal sign = , with the variable's name on

the left and the value it should store on the right.

x = 5
In the exapmple above, the assignment x = 5 sets x point to 5 .

The Python language reserves a small set of keywords that have a special language

functionality. No object can have the same name as a reserved word. Let us see what

happens in the following example:

 Cell In[3], line 1
 class = 5
 ^
SyntaxError: invalid syntax

You can see the keyword list any time by typing help("keywords")

Here is a list of the Python keywords. Enter any keyword to get more hel
p.

False class from or
None continue global pass
True def if raise
and del import return
as elif in try
assert else is while
async except lambda with
await finally nonlocal yield
break for not

Programmers are not mathematicians:

5

x = 0
print(y)
> ?

5

class = 5

help("keywords")

x = 5
y = x
print(y)

x = 0
print(y)

I mathematician would y expect to be 0 (the same value as x). However, in

Python the = sign does not set up a permanent relationship between two variables.

The assignment y = x sets y to point to the same thing as x . In the beginning,

x and y still point to the same value (5). Later, x points to a new value (0),

whereas y still points to 5 .

In Python = reads as point to.

Data Types

Basic data types are numeric (integer, floating point, complex), string and Boolean

• Integers are all whole numbers: e.g. -4, -6, 2, 5

• Floating point numbers are real numbers: e.g. -4.2321, -0.1, 5e-10, 10.01

• Complex numbers: e.g. 3+5j is written as complex(3,5)
• Strings contain text: e.g. “This is a String”

• The Boolean data type can either be True or False

int

float

str

bool

complex

One data type can also be converted into another:

int

integer_var = -3
type(integer_var)

real_number_var = 3.
type(real_number_var)

string_var = "I'm not a string."
type(string_var)

boolean_var = True
type(boolean_var)

comp = complex(3,5)
type(comp)

str_num = "123"
int_num = int(str_num)
type(int_num)

Exercise

1. Create a variable of each type you have learned.

2. Douple check the type of your created varibale by using type(<var>) .

3. What happens if you add 2 variables of different types? In which cases does it

work and in which does it not?

repeat example with your own variable names

repeat example with own variabel names

6.2
hello world
2

TypeError Traceback (most recent call last)
Cell In[16], line 3
 1 # String + Int does not work!
----> 3 print("Hello" + 3)

TypeError: can only concatenate str (not "int") to str

String Methods

Python has a set of built-in methods that you can use on strings. A good overview

can be found on W3School.

In the following a few examples are presented:

1.

2.

3.

Float + Integer works
print(3.2 + 3)

String + String works
print("hello " + "world")

Boolean + Boolean works
print(True + True)

String + Int does not work!

print("Hello" + 3)

Define a test string
test_string = "This is 'my' test string."

https://www.w3schools.com/python/python_ref_string.asp
https://www.w3schools.com/python/python_ref_string.asp

"This is 'my' test string."

"THIS IS 'MY' TEST STRING."

['This', 'is', "'my'", 'test', 'string.']

"Th!s !s 'my' test str!ng."

Exercise

Create various string variables and apply three different string methods.

repeat example with different functions

Lists, Tuples and Sets

A list can contain any type of variable and as many variables as you wish.

It is initialized by square brackets my_list = [item1, item2, item3, ...] .

If you are unsure about the content you can also declare an empty list with

empty_list = [] .

[3, 8.01, 'beer']

You can append items with my_list.append(var)

You can access a list item with my_list[<item index>]

'beer'

With slicing you can create a new list as a subset of the old list.

test_string

Converts a string into upper case
test_string.upper()

Splits the string at the specified separator, and returns a list
test_string.split(" ")

Returns a string where a specified value is replaced with a specified value
test_string.replace("i", "!")

Exercise

my_list = [3, 8.01, 'beer']
print(my_list)

my_list.append('another beer')

my_list[2]

[1, 2]

['Cherry', 'Banana']

Exercise

1. Create your own list.

2. Add another item to your list.

3. Access an item in your list via its index.

repeat example

repeat example

repeat example

A tuple is a collection which is ordered and unchangeable.

It is initialized with round brackets my_tuple = (var1, var2, var3, ...)

tuple

(1, 'test', 3.0)

Exercise

1. Create a tuple in which one item is a subset of your list.

2. Access an item in your tuple via its index.

3. Can you add an item to your tuple?

old_list = [0, 1, 2, 3, 4]
new_list = old_list[1:3]
print(new_list)

another_list = ["Apple", "Cherry", "Banana", "Orange", "Pineapple", "Mango"
smaller_list = another_list[1:3]
print(smaller_list)

1.

2.

3.

my_tuple = (1, "test", 3.)
type(my_tuple)

print(my_tuple)

1.
my_tuple = (1, "test", 3.)

2.
my_tuple[2]

3.0

AttributeError Traceback (most recent call last)
Cell In[35], line 2
 1 # 3.
----> 2 my_tuple.append("new item")

AttributeError: 'tuple' object has no attribute 'append'

A set is a collection which is unordered and unindexed. It does not allow duplicate

members. A set is initialized with curly brackets my_set = {item1, item2,
item3, ...}

set

Exercise

1. Create a set.

2. Access an item in your set via its index.

3. Can you add an item to your set?

{'beer', 'water', 'wine'}

TypeError Traceback (most recent call last)
Cell In[38], line 2
 1 # 2.
----> 2 my_set[2]

TypeError: 'set' object is not subscriptable

Dictionaries

A dictionary stores data in key and value pairs. It allows access of values via an

unique key. It is a collection which is ordered, changeable and does not allow

duplicates.

3.
my_tuple.append("new item")

my_set = {"water", "beer", "wine"}
type(my_set)

1.
my_set = {"water", "beer", "wine", "water"}
my_set

2.
my_set[2]

3.
my_set.add("test")

Creation

There are several methods to initialise a dictionary; use whatever fits your needs

best.

{'k': 1000, 'hello': 'world', 42: ['hello', 'world']}

All four dictionaries are equal.

True

{'k': 1000, 'hello': 'world', 42: ['hello', 'world']}

Accessing elements

Access a value of the dictionary via its key

1000

['hello', 'world']

You can get a list of all keys or values

dict_keys(['k', 'hello', 42])

dict_values([1000, 'world', ['hello', 'world']])

Modify dictionary

Dictionaries are by default mutable, therefore you can add new keys, overwrite

existing ones or delete them.

a = {"k":1000, "hello":"world", 42:["hello", "world"]}
b = dict([("k", 1000), ("hello","world"), (42,["hello", "world"])])
c = dict({"k":1000, "hello":"world", 42:["hello", "world"]})
d = dict(zip(["k", "hello", 42], [1000, "world", ["hello", "world"]]))

a

a == b == c == d

a

a["k"]

a[42]

a.keys()

a.values()

1000

{'hello': 'welt!', 42: ['hello', 'world'], 'New key': 23}

Watch out, if a key does not exist. Use get or pop method to be safe (pop removes

key).

KeyError Traceback (most recent call last)
Cell In[50], line 1
----> 1 a["key does not exist"]

KeyError: 'key does not exist'

'This key does not exist'

KeyError Traceback (most recent call last)
Cell In[52], line 1
----> 1 del a["hellofdhdf"]

KeyError: 'hellofdhdf'

"This key can't be deletet, because it does not exist"

Dictionaries can also be nested

Hello world!

Exercise

1. Create a new dictionary with the key-value pairs 1: "eins", "M": "Mega", "liste":

[1,2,3]

2. Add a new entry, where either the key or value is a tuple

3. Remove the key 1 from the dictionary

4. Append number 4 to the list, which is associated with key "liste". Print the

content of your dictionary afterwards

a["New key"] = 23
a["hello"] = "welt!"
a.pop("k")

a

a["key does not exist"]

a.get("key does not exist", "This key does not exist")

del a["hellofdhdf"]

a.pop("key does not exist", "This key can't be deletet, because it does not exist"

a["Nested"] = {1: "world!", 2: "Hello "}
print(a["Nested"][2] + a["Nested"][1])

{1: 'eins', 'M': 'Mega', 'liste': [1, 2, 3]}

{1: 'eins', 'M': 'Mega', 'liste': [1, 2, 3], 'tuple': (1, 2, 3)}

{'M': 'Mega', 'liste': [1, 2, 3], 'tuple': (1, 2, 3)}

{'M': 'Mega', 'liste': [1, 2, 3, 4], 'tuple': (1, 2, 3)}

1.
exercise_dict = {1: "eins", "M": "Mega", "liste": [1,2,3]}
exercise_dict

2.
exercise_dict["tuple"] = (1,2,3)
exercise_dict

3.
exercise_dict.pop(1)
exercise_dict

4.
exercise_dict['liste'].append(4)
exercise_dict

