
Difference	between	mistral	and	a	mobile	phone
Because	this	is	not	the	central	part	of	the	course	and	contains	no	executable	code,	it	will	be	more	a	collection
of	useful	information	rather	than	a	detailed	description	of	the	topic.

Hardware	and	Software	developed	side-by-side	starting	the	first	half	of	the	20th	century	mainly	as	industrial
tools	to	push	forward	automation	in	production	and	data	assesment	and	analysis	but	also	from	the	military
area.

Hardware

Notable	mentions:

Z1:	first	programmable	computer	by	Konrad	Zuse	around	1937,	purely	mechanical,	privately	financed

ENIAC:	first	programmable	electronic	computer,	1945-1956,	18000	tubes,	Army	research	Lab

Mechanical	was	not	reliable,	so	the	rapid	miniaturiaztion	for	electronic	parts	pushed	the	computer	hardware
from	tubes	to	transistors	to	microprocessors	beginning	in	the	1960s

If	you	are	more	interested	in	the	history	part,	check	IBM.	It	shows	the	close	relation	between	computing,
industry,	military	and	society	over	more	than	a	century.

Basic	parts	of	a	computer	system
Almost	all	computers	follow	the	so-called	von	Neumann	architecture	from	1945:

Input	and	Output
Central	processing	for	arithmetics/logics	and	memory	controlling
Memory

What	a	computer	can	do	is	basically

write	to	memory
read	from	memory
compute	with	the	memory

Different	chipsets	offer	different	operations	with	single	instructions	collected	under	the	term	Assembler	or
Assembly	language.	Hardware	architecture	you	might	know:

X86	32/64bit:	XBox,	Playstation	4/5,	Laptops,	Desktops,	Mistral
Arm:	smartfon,	tablet,	recent	HPC-systems	like	Fugaku
MIPS:	64bit,	routers
RISC:	old	SGI	HPC	systems
PowerPC:	based	on	RISC,	IBM	PC	and	HPC	systems,	Apple	hardware	before	Intel-aera,	Playstation	3

Memory	in	action
input	program

https://learn.saylor.org/mod/page/view.php?id=22020
https://en.wikipedia.org/wiki/IBM
https://upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Von_Neumann_Architecture.svg/720px-Von_Neumann_Architecture.svg.png
https://en.wikipedia.org/wiki/Assembly_language#Assembler

#include	<stdlib.h>																																																												
#include	<stdio.h>
#include	<math.h>
	
int	main(int	argc,	char	**argv)	{
		double	x	=	atof(argv[1]);
		double	result	=	x+x;
		printf("results	%f\n",	result);
		return	0;
}

Compile	it	with	 gcc	-S	addition.c 	to	assembly	on	two	different	systems	(mistral	+	laptop)	with	GCC	compiler
leads	to	two	slightly	different	files.	See	 addition-laptop.s 	and	 addition-mistral.s 	in	the	repository.

Memory	Hierarchy

type access size cost

registers 5ns 1e2 part	of	CPU
caches	(SRAM) 10ns 1e6 100.00	$/MB
main	memory	(DRAM) 100ns 1e9 1.00	$/MB
hard	disk 5000ns 1e11 .05	$/MB

Real	Size:	1cmx1cm

Software

Together	with	programmable	hardware	the	languages	evolved.	Hence	Konrad	Zuse	was	again	the	first:
Plankalkühl	non-published	book	from	1945	because	of	WWII.	Another	old	standing	member	in	the	family	of
programming	languages	is	FORTRAN	from	1950s	(Good	overview	of	languages)

Basic	goal:

expression	of	mathematical	formual	(computation!)
expression	of	algorithms	->	solving	problems!

How	to	put	software	into	action

As	mentioned	above	software	exists	in	different	abtraction	levels	but	today	mostly	in	the	form	a	text	file.	In
the	early	days	punch	cards	were	used	instead	because	there	where	easier	to	read	by	machines	(Fortran
example).	But	let's	stick	to	text	files:

Basic	compilation	process

The	compiler	translates	the	source	through	several	step	into	a	machine	language	and	outputs	an	executable

http://zuse.zib.de/item/DB2j_t_w1fbxvaiq
https://learn.saylor.org/mod/page/view.php?id=22022
https://en.wikipedia.org/wiki/Punched_card
https://upload.wikimedia.org/wikipedia/commons/5/58/FortranCardPROJ039.agr.jpg

program,	which	can	then	later	be	used	as	often	as	needed.

But	Python	is	NOT	a	compiled	language!	True,	the	difference	is	not	so	huge.	here	is	how	it	works	with	python:

In	interpreter	incorporates	all	necessary	steps	of	the	compiler	and	linker	AND	executes	the	program.	Both
methods,	Compilation	and	Interpretation	have	pros	and	cons:

compiled	programms	need	to	be	re-compiled	every	time	the	source	code	is	changed
compiled	programms	contain	machine	code,	only.	This	gives	a	big	advantage	in	runtime	performance
interpreter	don't	bother	the	programer	with	complex	compilation	processes	and	linking	problems
programs	for	an	interpreted	language	are	source	code:	very	easy	to	debug	and	change
the	development	cycle	with	an	interpreter	language	is	faster,	because	there	is	no	extra	compilation	step.
Of	course	there	are	techniques	to	combine	both	types	of	languages	;-)

Example	from	above	in	python	(invented	by	Guido	von	Rossum)

import	sys
x	=	float(sys.argv[1])
result	=	x*2
print("result	=	%s",result)

Running	(Compilation	+	Execution)	with	 python	addition.py	3

Further	readings

This	collection	of	free	online	books	is	a	good	start

Mistral	configuration

https://www.dkrz.de/up/systems/mistral/configuration

https://gvanrossum.github.io/
https://www.sciencebooksonline.info/computer-science.html
https://www.dkrz.de/up/systems/mistral/configuration

