
Data Systems @DKRZ:
Tech Tussle

or:
The start of an

improved collaborative process to
ease data handling for

DRKZ users

22 Feb 2023, support@dkrz.de

mailto:support@dkrz.de

Goal - why are we here today?
ESM output data is becoming so voluminous and
complex that its organisation and analysis has become
extremely difficult

This is why today, we’d like to

➔ Establish a process which enables organized
exchange and collaboration between DKRZ and
DKRZ users to develop and provide a more
suitable service portfolio meeting the data
handling requirements of DKRZ users.

What will happen now…
Setting the scene

-> team, boundary conditions, possible concept

Tech Tussle -> Brainstorming for constructive exchange

-> given the boundary conditions of our infrastructure

Who we are (at the moment)

● Anna Fuchs (storage)
● Florian Ziemen (visualization, workflow support for nextGEMS, ESiWACE2)
● Panos Adamidis (ICON I/O, HPC)
● Martin Bergemann (freva)
● Daniel Heydebreck (HSM expert/support)
● Fabian Wachsmann (data processing and data distribution)
● Karsten Peters-von Gehlen (a little bit of everything, connecting the pieces)
● Sven Willner and team (MPI-M, semantic data storage)

With support of various other colleagues with specific expertise in data handling
aspects (hardware, analysis, metadata, catalogs)

Ignorance is the mother
of all adventures

Books may indeed be
quite useful - but
remember the saying:

Time to get to
know you!

What is your biggest problem in your daily data handling workflow?

Enter one keyword, please! this-is-a-long-keyword is also possible… ;-)

Participants can vote at
Slido.com with

#4256749
or

https://rb.gy/4yyii9

http://slido.com/

Our impression so far…

Workflow problem involves
- Data selection
- Multiple Tiers of Storage (fast, slow, very slow)
- Multiple Types of Storage (tape, object, posix etc)
- Performance is an issue.
- Compression is needed.
- Lots of technology available, or potentially

available, but hard to harness and/or not clearly
useful.

- Balance of “difficulty” tilting away from
“simulation hard, analysis easy” to “simulation
hard, analysis just as hard”.

After B Lawrence

We feel you and that’s
why we’re here today!

Boundary conditions defined by available
infrastructure components

Levante HPC
Specs:

2832 CPU Nodes
100 Gbit/s per node
(compute, shared,
interactive)

60 GPU Nodes (GPU)

No storage on nodes.

Rank 53 of the
TOP500-List (11/2022)

Storage systems
Property File System Object Storage * HSM

Visible as / … on levante
(normal File system)

https://swiftbrowser.dkrz
.de *

via slk command line
tool on levante.

Capacity 130 PB 1 PB * ~ 240 PB (new library)
~ 2 PB disk cache.

Time to first byte ms ms min-hr
We need the tape system because it is bigger than the disk storages.

Tape has high latencies. Most of the working data must be on the file
system since it is much bigger than the other disk storage systems.

* successor:
 object storage (S3)
 using disk storage
 from Mistral planned

Parallel file system (Lustre /work/ /home/ /…)

● Strength:

○ Fast access to large amounts of data

○ Parallel read/write of files

● Used for most of the data storage

○ “luxurious” conditions compared to other HPC systems

○ a lot of old data has not been read in years

● Every file is distributed across many disks (HW RAID + Lustre FS)

Object storage (swift)

● Strength:

○ Anonymous access from outside of DKRZ possible

● Used for:

○ Sharing files with outside users

○ Hosting Cloud Optimized Data (zarr) for e.g. easy reduction of data transfers

○ Gitlab LFS extension

● Every file is distributed across 6 disks per (5GB) chunk

● Bigger S3-interfaced successor using old Mistral disks is planned

Tape storage (HSM / slk / Stronglink)
● Strength

○ Minimal energy usage and cost
○ automated harvesting of netCDF metadata

● Used for
○ Archival of simulations after analysis
○ Archival of restart files
○ Long-term storage of data
○ A few minutes latency for fetching a tape and

forwarding to the read location
● ~300MB/s read speed per tape
● New library scheduled to enter operation in April

Requesting small amounts of
data is inefficient.
Multi-TB files take long to read.

Work in progress

current workflows (non-exclusive)

● user performs model run on Levante,
analyzes the data at DKRZ and stores the output data at DKRZ

● data is stored in the DKRZ tape archive;
user wishes to retrieve and copy them to an external location

● user performs a simulation at another HPC site and copies the
data to DKRZ for further analysis and long term storage (tape)

● data is stored at DKRZ (Lustre or tape archive);
a user wishes to analyze the data

Anders et al. (2022),
doi: 10.1162/dint_a_00127

What would be of biggest value a data handling system could give to you?

Pick 4 of the provided options

Participants can vote at
Slido.com with

#4256749

http://slido.com/

Plan for the concept I (VERY high-level)
Data, produced by
models, are stored
at DKRZ in different
storage locations
and are indexed in
centrally maintained
catatalogue(s)

Users submit
semantic query via
interface to access
dataset according to
their needs

System provides
data to the user
according to their
semantic query

User works with
the data, produces
results, etc. This
working data can
also be used by
other users if
required.

End of analysis,
data gets deleted if
not used for some
time.
Workflow gets
saved to perform
reiteration if needed

● centrally maintained and administered
● catalogued data requires that metadata follow

at least system-wide requirements
○ support will be available

● system use should not be mandatory, but
support for people not using the system will not
be provided to the same extent as if the system
was used

● future data handling will/has to involve a shift in
the way we work

○ -> cultural / social aspect which cannot be ignored

Plan for the concept II

https://xkcd.com/2739/

https://xkcd.com/2739

What do we have? What is in progress?

BORGES

How familiar are you with current efforts to improve data handling in the
DKRZ environment?

Pick 1 of the provided options

Participants can vote at
Slido.com with

#4256749

http://slido.com/

HSM / StrongLink

metadata feature

● netCDF metadata automatically harvested
○ standard_name + long_name + name of variable
○ time variable: first and last value
○ ≅100 global attributes

● manual metadata updates possible
● manual Grib2 metadata import tool in preparation
● search files based on metadata

details: https://docs.dkrz.de/doc/datastorage/hsm/metadata.html

questions: support@dkrz.de

https://docs.dkrz.de/doc/datastorage/hsm/metadata.html
mailto:support@dkrz.de

Semantic data access

write

load_data(variable=’tas’, simulation=’ngc2009’, time=’2020-02-22’)

instead of

load_data(‘/work/bm1235/k203123/experiments/ngc2009/run_20200219T000000-
20200304T235920/ngc2009_atm_2d_30min_inst_20200222T000000Z.nc’)

needs a logic that identifies data according to meaningful properties, usually some
form of table/database.

Intake(-ESM)

Intake(-ESM) uses a catalog file of dataset properties and identifiers; at least 5
large catalogs of climate model simulation output are maintained at DKRZ.

As identifier, anything works that python can be taught to load data from.

e.g.

variable_id=ta, simulation_id=ngc2013, time_min=2020-02-.*, frequency=23hour,
level_type=ml

yields

slk:///arch/bu1213/NGC2/ngc2013/outdata/ngc2013_atm_ml_23h_inst_1_202002
01T000000Z.nc

Intake-ESM / slkspec / find_files / outtake

● Intake catalogs provide semantic data access
● slkspec allows python to download files from the HSM system
● find_files (shell script) provides command line access to the catalog and slkspec
● outtake (py module) provides high-level interface for the combination of intake catalogs

and slk.

Pro:

● Provides analysis-ready data by reduction of data preparation tasks for users e.g. by
automated aggregation of files to data sets

● Enables data access independent of file format and storage location from one catalog

Con:

● Only integrates seamlessly with python.
● Slkspec: no asynchronous tape retrieval - other operations are blocked

Freva - Free Evaluation System

● Freva is a data search and analysis platform
● The system comes with a web, command line and python user interface
● Con not only search for data but also run scientific analysis code

Pros:

● Central cataloging system via apache solr -> fast and scalable.
● Reproducible data analysis because configs are stored in databases.
● Intuitive web UI -> click.

Cons:

● RESTful workflow API only in dev stage -> currently hard to design thin clients in
other languages - but this will change.

● There is no centralised DKRZ instance of Freva.
https://openresearchsoftware.metajnl.com/arti
cle/10.5334/jors.253/

https://openresearchsoftware.metajnl.com/article/10.5334/jors.253/
https://openresearchsoftware.metajnl.com/article/10.5334/jors.253/

Borges data system
● Goal: Make data use fully independent from

storage (location, format, ...)

● Central, global index of data in the system
○ Make data fully discoverable and searchable
○ Focus for prototype: ICON-output data with automatic metadata (incl. model version, configuration, ...) using

GRIB standard

● Data-access only in a semantic way ("what" instead of "where"); no files visible/accessible,
as if uploaded to a cloud storage

● All access through a middleware to
○ Keep central index and storage consistent
○ Abstract from storage back-end in a seamless way: Classical file system, tape, other HPC centers
○ Make data easily shareable among users
○ Integrate with current resource accounting (storage use, compute time) and systems (Lustre, HSM, …)
○ With minimal overhead compared to "direct file access"

● Lightweight client library to integrate into existing interfaces: cdo, Python (Intake-like), ?

Who is responsible for managing the data storage?
“The system” “The user”

Pros - Defined interfaces and abstractions
ensure consistency and robustness

- Data access is known and data can be
moved around automatically as needed
or demanded

- Allows for optimization in the
background

- Most libraries support reading from
file-based data and can be continued
to be used

- Little adaptation by the user needed
- Low-level control for users if desired

Cons - No direct file access, only via system
interface

- Dependence not only on the underlying
back-ends but also on the data system

- Users must be able to trust the data
system as much as e.g. Lustre or HSM

- Little auto-”magic”, users have to move
data around themselves (though
supported by tools)

- Users have to manage access
permissions low-level

- Danger of continuing to be messy and
uneconomic

…but compromises possible(?)

Let’s discuss!!

● Do you have questions?
● Do you work on a similar project?
● Do you have a specific use case which we might have overlooked?
● Do you have any other feedback?

More technical backup-slides also available ;-)

