python_core_language_part3

10f14

In |

In |

In [

In |

In [

Out]|

In [

In [

Out]|

]:

]:

Python core language part 3

Content

You will learn:

e functions

e classes

Functions

A function is a block of code, which only runs when it is called.

It allows to divide your code into useful blocks.

Syntax:

def function name(input parameter):

statement

[.]

return output parameter

def foo():
pass

foo()

Example

def plus(a, b):
print(a)
print(b)
return a + b

bar = plus(3,4)

3
4

bar

def gauss(n):
return (n*(n+l)/2)

gauss(100)

5050.0

file:///home/dreistein/tmp/notebooks/python_core_langua...

24/03/2023, 17:09

file:///home/dreistein/tmp/notebooks/python_core_language_part3.html#functions
file:///home/dreistein/tmp/notebooks/python_core_language_part3.html#functions
file:///home/dreistein/tmp/notebooks/python_core_language_part3.html#classes
file:///home/dreistein/tmp/notebooks/python_core_language_part3.html#classes

python_core_language_part3

20f14

In []:

In []:

Out[]:

In []:

In []:

Out[]:

In []:

In []:

In []:

def gaus(x):
g = (x*(x+1))/2
return g

gaus(100)

5050.0

def gauss2(n):
if 1 == n:
return n
else:
return n+gauss2(n-1)

gauss2(100)

5050

gauss2(100)
return 100 + 4950
gauss2(99)

return 99 + gauss2(98)
gauss2(2)

return 2 + 1

gauss2(1)

return 1

def bar(a,b):
a_new= a+b
b_new= a*b
C_new= a _new + b new
return a new,b new,c new

bazl = bar(10,20)
print(bazl[0])

30

bazl, , = bar(10,20)
print(bazl)

30

Excercise

1. Implement the Gauss formula as a function.

2. Compare the results with the for loop for different cases.

file:///home/dreistein/tmp/notebooks/python_core_langua...

24/03/2023, 17:09

python_core_language_part3 file:///home/dreistein/tmp/notebooks/python_core_langua...

Classes

A python class is a collection of data and functions and can act as a blueprint, from which
any number of instances can be created from. The class represents a new type and each
of its instantiated objects has the same type. The functionality of python's class concept
is geared to C++ and therefore offers all standard class concepts like inheritance. Since
inheritance is a rather large topic, we will focus on the basic concepts; more information
can be found in the official documentation of python.

Oversimplified a class offers a new namespace, by which all attributes of a class can be
accessed and are separated from other variables or functions, which have the same
name. All attributes (methods or variables) of a class are bound to the class or their
objects. An attribut might be either a data attribute or a method.

Very minimal working example

In []: class VeryMinimalExample:
pass

foo = VeryMinimalExample()

In []: type(VeryMinimalExample)

Out[1: type

Minimal working example, which does something

In []: class MinimalExample:
"""Minimal working class"""
foo = 42

def baz():
print("Hallo Welt")

def bar(self):
print("Hello World")

In []: def baz():
print("Bonjour")

In [1: baz()

Bonjour

30f14 24/03/2023, 17:09

https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html

python_core_language_part3 file:///home/dreistein/tmp/notebooks/python_core_langua...

Using a class

Classes can be used for two things:

1. Access global class attributes
2. Use it as a blueprint to instantiate a class object

In []: print(MinimalExample.fo00)
17

Class attributes can be read from as well as be written to.

In []: MinimalExample.foo = 17
print(MinimalExample. foo0)

17

In []: MinimalExample.baz()

Hallo Welt

In [1: baz()
Bonjour

bar(self) takesthe an argument self , which represents the instantiated class
object. It's convention and good practice to name the first argument of a class method

self . It can be named as you want (even though this is considered a bad style), its
only important that it is the first argument. Via self the methods can access the
object's attributes, on which the method is executed on. In the next section you will see
how to instantiate such an object. Therefore, to call bar() , an class instance is
needed.

In []: MinimalExample.bar()

TypeError Traceback (most recent call las
Input In [48], in <cell line: 1>()
----> 1 MinimalExample.bar()

TypeError: bar() missing 1 required positional argument: 'self!

Instantiate an object

To create an object simply assume that the class is a function without parameters (in this
case. It is possible, that the constructor requires you to pass arguments).

In []: myObj = MinimalExample()

In []: print(myObj.foo0)
17

4 0f 14 24/03/2023, 17:09

python_core_language_part3 file:///home/dreistein/tmp/notebooks/python_core_langua...

50f14

In [

In [

Out][

In [

In [

Out][

In [

Out|

In [

In [

Out[

In [

In [

Out][

In [

In [

my0bj.baz ()

TypeError Traceback (most recent call las
Input In [51], in <cell line: 1>()

----> 1 myObj.baz()

TypeError: baz() takes 0 positional arguments but 1 was given

#MinimalExample.baz()
myObj .bar()

'Hallo'

Like class attributes you can change attributes of an instance as well.

def hallo():
return "Hallo"

hallo

<function main_ .hallo()>

myObj.bar = hallo
my0bj.bar()

'Hallo'
my0Obj2 = MinimalExample()

MinimalExample. dict

mappingproxy({' module ': ' main_ ',
' doc_ ': 'Minimal working class',
‘foo': 42,

'baz': <function main_.MinimalExample.baz()>,

‘bar': <function main_ .MinimalExample.bar(self)>,

' dict ': <attribute ' dict ' of 'MinimalExample' objec
ts>,

' weakref ': <attribute ' weakref ' of 'MinimalExample'’
objects>})

my0bj2.bar()
Hello World

myObj2.foo

42

my0bj.foo = 1337
print(myObj.foo)

1337

print(MinimalExample. foo0)

42

24/03/2023, 17:09

python_core_language_part3 file:///home/dreistein/tmp/notebooks/python_core_langua...

Explicit constructor

Class instantiations are by default empty objects. A constructor (__init) canbe
implemented to define the initial state of the object. self has no special meaning in
python but is used in python to denote that a function or attribute belongs to a specific
object and not the general class. Each class has a built-in ~_init (self) function,
either explicit (overridden) or implicit (original built-in). It is executed by calling the class
like a function, which executes the ~ init (self) function. It corresponds to the
constructor method in C++. Like in C++ there is also a destructor, which is in Python
__del (self) . Since Python has a garbage collector, there are fewer use cases to
make use of the destructor.

In []: class MediumExample:
"""Class example with data initialisation"""

def init (self, x):
self.x
self.y

X
10
In []: print(MediumExample.y)

AttributeError Traceback (most recent call las
Input In [85], in <cell line: 1>()
----> 1 print(MediumExample.y)

AttributeError: type object 'MediumExample' has no attribute 'y

In [1: myObj2 = MediumExample(1)
In []: print(myObj2.x)
print(myObj2.y)

1
10

New object attributes can be created on the fly and do not interfere with other existing
objects or the class itself.

In []: print(myObj2.baz)

AttributeError Traceback (most recent call las
Input In [88], in <cell line: 1>()
----> 1 print(my0Obj2.baz)

AttributeError: 'MediumExample' object has no attribute 'baz'

In []: myObj2.baz=100
print(my0bj2.baz)

100

New methods can be created as well.

6 of 14 24/03/2023, 17:09

python_core_language_part3 file:///home/dreistein/tmp/notebooks/python_core_langua...

In []: def add(a,b):
return a+b

In []: myObj2.new method = add

In []: myObj2.new method(20,30)
Out[1: 50

Attributes can also be deleted on-the-fly with the del statement.

In []: del myObj2.baz

In []: print(myObj2.baz)

AttributeError Traceback (most recent call las
Input In [94], in <cell line: 1>()
----> 1 print(my0Obj2.baz)

AttributeError: 'MediumExample' object has no attribute 'baz'

In []: print(my0bj2)
< main_ .MediumExample object at 0x7fffd4674940>

We create a class, which represents pixel. The class should satisfy the following
requirements:

1. Three attributes, which represent the RGB channel (one attribute for the red value,
one attribute for the green channel, one attribute for the blue channel). Those values
shall be passed to the object during its creation. Make sure that only values between
0 and 255 are accepted: Values below zero should be set to zero, values above 255
to 255!

2. The class shall implement a method str (self) , which returns a string,
which characterizes a pixel, i.e. if you print your pixel object (like

print(Pixel(50,100,150)))it shall return a descriptive string.

In []: # Basic skeleton
class Pixel():
def init (self, r, g, b):
pass

Pass initial arguments of pixel to class

In []: # Pass arguments
class Pixel():
def init (self, r, g, b):

self.r = r
self.g =g
self.b = b

7 0f 14 24/03/2023, 17:09

python_core_language_part3 file:///home/dreistein/tmp/notebooks/python_core_langua...

In []: test=Pixel(1,2,-3)
print(test.b)

-3

Perform sanity checks so that each value is in between 0 and 255. There are multiple
possibilities how to do this, three ways are demonstrated. They differ regarding verbosity
and lines of code.

In []1: # Check passed arguments
class Pixel():
def init (self, r, g, b):
channel r
if r < 0:
self.r = 0
elif r > 255:
self.r = 255
else:
self.r

]
=

channel g
self.g = 0 if g < 0 else 255 if g > 255 else g

channel b
self.b = min(255, max(0, b))

To check we create three pixels

In []: pixell = Pixel(10,20,30)
pixel2 = Pixel(-150,0,150)
pixel3 = Pixel(100,200,300)
print(pixell)
print(pixel2)
print(pixel3)

< main_ .Pixel object at 0x7fffd4c34b50>
< main_ .Pixel object at 0x7fffd4c34400>
< main_ .Pixel object at 0x7fffd4c34340>
min(255, max(0, -10)) -> min(255,0) -> 0

min(255, max(0,300)) -> min(255, 300) -> 255

Not very expressive yet, therefore we setup a special method, so that print which
values of the object to print

In []1: # Implement str method
class Pixel():
def init (self, r, g, b):

self.r = min(255, max(0, r))
self.g = min(255, max(0, g))
self.b = min(255, max(0, b))

def str (self):
return "Hello World"

8 of 14 24/03/2023, 17:09

python_core_language_part3 file:///home/dreistein/tmp/notebooks/python_core_langua...

In []: # don't forget to reinstance the objects, otherwise the objects following
pixell = Pixel(10,20,30)
pixel2 = Pixel(-150,0,150)
pixel3 = Pixel(100,200,300)
print(pixell)
print(pixel2)
print(pixel3)

Hello World
Hello World
Hello World

In [1: # Implement str method

class Pixel():
def init (self, r, g, b):

self.r = min(255, max(0, r))
self.g = min (255, max(0, g))
self.b = min(255, max(0, b))

def str (self):
#return str(self.r) + " " + str(self.g) + " " + str(self.b)
return f"R:{self.r}\tG:{self.g}\tB:{self.b}\tHex:#{self.r:02x}{se

In []: pixel4,test2 = Pixel(1,2,3)

TypeError Traceback (most recent call las
Input In [127], in <cell line: 1>()

----> 1 pixel4,test2 = Pixel(1,2,3)

TypeError: init () should return None, not 'tuple’

In []: # don't forget to reinstance the objects, otherwise the objects following

pixell = Pixel(10,20,30)
pixel2 = Pixel(-150,0,150)
pixel3 = Pixel(100,200,300)
print(pixell)

print(pixel2)

print(pixel3)

R:10 G:20 B:30 Hex:#0al4dle
R:0 G:0 B:150 Hex :#000096
R:100 G:200 B:255 Hex:#64c8ff

In[]: for i in [1,2,3]:
print(i)

N

90f14 24/03/2023, 17:09

python_core_language_part3 file:///home/dreistein/tmp/notebooks/python_core_langua...

Special attributes

There are many special attributes, which allows special interaction with your objects. We
will have a closer look on one example to get the idea of this concept.

An iterator represents a stream of data, which can be easily iterated. If your data
structure supports iteration it has the advantage that it can easily be used ina for
loop. An iterable object can can be iterated through its values by implementing
__iter () and next ().

e iter () returns the iteration object, which can be used to go through the
values.

e next () returnsthe next object in the sequence.

To stop the iteration (necessary if the output is not created dynamically) you can raise an
StopIteration exception. We will not cover exceptions here, so to prevent further
output you can add a condition branch with raise StopIteration as soon as the
last element is reached.

Collections are iterate-able, i.e. you can get an iterator object from them.

In []: fruits = ["Ananas", "Apple", "Banana"]
iterator = iter(fruits)
print(next(iterator))
next(iterator)
print(next(iterator))
print(next(iterator))

Ananas
Banana

StopIteration Traceback (most recent call las
Input In [132], in <cell line: 6>()

4 next(iterator)

5 print(next(iterator))
----> 6 print(next(iterator))

StopIteration:

A for loop makes use of an iterator.

In [1: for fruit in fruits:
print(fruit)

Ananas
Apple
Banana

10 of 14 24/03/2023, 17:09

python_core_language_part3 file:///home/dreistein/tmp/notebooks/python_core_langua...

Create a new collector class PixelCollection , which represents a data structure: it
stores a list of single Pixel objects and allows to easily iterate them. You can decide if
you want to pass a complete list during the creation of a PixelCollection object or
if you implement a method, to add single Pixel objects one by one.

In [1: # skeleton
class PixelCollection():
def init (self, pixel list):
pass

def iter (self):
pass

def next (self):
pass

First save the initial pixel list and allow to add new pixels. We will ignore for this demo
convenience features like accessing or removing objects and no sanity checks will be
performed (e.g. make sure that passed objects really belong to class Pixel).

To keep things easier, we make sure that the constructor can be called without any list by
using an optional argument pixel list=[] . If nothing is passed, the empty list us
used.

In [1: # skeleton
class PixelCollection():
def init (self, pixel list=[]):
self.collection = pixel list

def append(self, pixel):
self.collection.append(pixel)

Now we assign a PixelCollection object to the variable collection , and add
pixell, pixel2 and pixel3 to the collection.

In []: collection = PixelCollection()
print(collection.collection)

[]

In []: for pixel in [pixell, pixel2, pixel3]:
collection.append(pixel)
print(collection.collection)

[< main_ .Pixel object at Ox7fffd4590460>, < main .Pixel object at 0x7
fffd45909d0>, < main_ .Pixel object at Ox7fffd4590fd0>]

Our collection is set up but the iteration with a for loop does not work yet.

In []: for pixel in collection:
print(pixel)

11 of 14 24/03/2023, 17:09

python_core_language_part3

12 of 14

In []:

In []:

In [1:

In []:

Traceback (most recent call las

TypeError

Input In [139], in <cell line: 1>()
----> 1 for pixel in collection:

2 print(pixel)

TypeError: 'PixelCollection' object is not iterable

define iter
class PixelCollection():

def init (self, pixel list=[]):
self.collection = pixel list

def append(self, pixel):

self.collection.append(pixel)

def iter (self):
return self

Define method to iterate the pixels in our collection. For this we need to remember the

idnex of the current pixel

define next
class PixelCollection():

def init (self, pixel list=[]):
self.collection = pixel list

self.index = -1

def append(self, pixel):

self.collection.append(pixel)

def iter (self):
return self

def next (self):
self.index += 1

return self.collection[self.index]

collection = PixelCollection([pixell, pixel2,pixel3])

for pixel in collection:
print(pixel)

R:10
R:100
#collection.append(pixel4)

for pixel in collection:
print(pixel)

R:10 G:20 B:30 Hex:#0al4dle
R:0 G:0 B:150 Hex :#000096
R:100 G:200 B:255 Hex:#64c8ff
R:10 G:20 B:30 Hex:#0aldle

G:20 B:30 Hex:#0al4le
R:0 G:0 B:150 Hex :#000096
G:200 B:255 Hex:#64c8ff

file:///home/dreistein/tmp/notebooks/python_core_langua...

24/03/2023, 17:09

python_core_language_part3 file:///home/dreistein/tmp/notebooks/python_core_langua...

Almost there! It only be good, if our collection would not throw an error if its end is
reached!

In []: # define throw StopIteration at the end
class PixelCollection():

def init (self, pixel list=[]):
self.collection = pixel list

def append(self, pixel):
self.collection.append(pixel)

def iter (self):
self.index=-1
return self
def next (self):
self.index += 1
if self.index >= len(self.collection):

raise StopIteration
return self.collection[self.index]

In [1: collection = PixelCollection([pixell,pixel2,pixel3])

In []: for pixel in collection:
print(pixel)

TypeError Traceback (most recent call las
Input In [174], in <cell line: 1>()
----> 1 for pixel in collection:

2 print(pixel)

TypeError: 'PixelCollection' object is not iterable

Now it works! Our design has definitely still some flaws but this is enough at the moment.

In []: pixel4 = Pixel(10,20,30)

In []: id(pixell)

Out[1: 140736751085600

In []: pixell. hash_ ()

Out[1: 8796046942850

In []: id(pixel4)

Out[]: 140736762654880
In []: a= 37

In []: pixel4. hash ()

Out[1: 8796047665930

13 0f 14 24/03/2023, 17:09

python_core_language_part3

14 of 14

In []:

In [1:

Out[]:

In []:

Out[]:

In []:

a == 42

False

37

file:///home/dreistein/tmp/notebooks/python_core_langua...

24/03/2023, 17:09

