#) J0LICH

FORSCHUNGSZENTRUM

=
©
<
&
@
£
9]
£
3]
Q
N
=
[S)
<
£
©
I
=
@
S
=
2
=)
p=
=

Performance Analysis 1

January 2015 | Michael Knobloch

Outline

= This lecture:

= Basic concepts of performance analysis
Sampling & Instrumentation
Profiling & Tracing
= Performance analysis with Score-P
Tool overview

= Next lecture (25.01.2016)
= Trace analysis in detall
= Automatic analysis with Scalasca
= Manual analysis with Vampir

M. Knobloch Performance Analysis I, January 2015

A jOLICH

FORSCHUNGSZENTRUM

Motivation

Premature

optimization Is the

root of all evil.
Make it work, Donald E. Knuth
make It right,
make It fast.

Kent Beck

If you optimize
everything, you will
always be unhappy.

Donald E. Knuth

M. Knobloch Performance Analysis I, January 2015

Today: the “free lunch” is over #) 0LICH

FORSCHUNGSZENTRUM

= Moore's law is still in charge, but

= Clock rates no longer increase ¢ MoGrES LW °
= Performance gains only through
Increased parallelism =t e
= Optimizations of applications more e -
difficult

= Increasing application complexitymz'

= Multi-physics /-

s Multi-scale

= Increasing machine complexity B0 1m0 2w 2010
= Hierarchical networks / memory
= More CPUs / multi-core
= Every doubling of scale reveals a new bottleneck!

M. Knobloch Performance Analysis I, January 2015 4

Performance factors of parallel applications #) J0LICH

FORSCHUNGSZENTRUM

= ‘Sequential” factors

= Computation

% Choose right algorithm, use optimizing compiler
= Vectorization

& Especially important on many-core architectures

= Cache and memory
< Tough! Only limited tool support, hope compiler gets it

right

= Input/ output

& Often not given enough attention

M. Knobloch Performance Analysis I, January 2015 5

Performance factors of parallel applications #) J0LICH

FORSCHUNGSZENTRUM

= ‘Parallel” factors
= Partitioning / decomposition
<+ Load balancing
= Communication (i.e., message passing)
= Multithreading
= Synchronization / locking
% More or less understood, good tool support

M. Knobloch Performance Analysis I, January 2015 6

Tuning basics o, JULICH
= Successful engineering is a combination of
= The right algorithms and libraries
= Compiler flags and directives
= Thinking I!!

= Measurement is better than guessing
= T0 determine performance bottlenecks
= [0 compare alternatives
= [0 validate tuning decisions and optimizations
<= After each step!

M. Knobloch Performance Analysis I, January 2015 7

Performance engineering workflow A JULICH

FORSCHUNGSZENTRUM

v
. = Prepare application (with symbols),
Prepajratlon insert extra code (probes/hooks)
M - = Collection of data relevant to
easulremen execution performance analysis
Analvsi = Calculation of metrics, identification
nalys's of performance metrics
c . = Presentation of results in an
xamllnatlon intuitive/understandable form
o = Moadifications intended to eliminate/reduce
Optimization performance problems

M. Knobloch Performance Analysis I, January 2015 8

The 80/20 rule #) JOLICH

FORSCHUNGSZENTRUM

= Programs typically spend 80% of their time in 20% of
the code

& Know what matters!

= Developers typically spend 20% of their effort to get
80% of the total speedup possible for the application

< Know when to stop!

= Don't optimize what does not matter
& Make the common case fast!

M. Knobloch Performance Analysis I, January 2015 9

Classification of measurement techniques #) JULICH

FORSCHUNGSZENTRUM

= How are performance measurements triggered?
= Sampling
= Code instrumentation

= How is performance data recorded?
= Profiling / Runtime summarization
= Tracing

= How is performance data analyzed?

= Online
s Post mortem

M. Knobloch Performance Analysis |, January 2015 10 10

Sampling

A jOLICH

FORSCHUNGSZENTRUM

T
== F I HElr rrir is—-
- f00(0) | | foo(1) | | foo(2)

return 0O;

}

void foo (int 1)
{

if (1 > 0)
foo(i - 1);

= Running program is periodically interrupted
to take measurement

Timer interrupt, OS signal, or HWC overflow

Service routine examines return-address stack

Addresses are mapped to routines using
symbol table information

= Statistical inference of program behavior

Not very detailed information on highly
volatile metrics

Requires long-running applications

M. Knobloch

s Works with unmodified executables

Performance Analysis |, January 2015 11

Instrumentation

t
\

—t
S

JULICH

FORSCHUNGSZENTRUM

N

t6 78

tt
vV

:
|

|1 F

Py
—1 |
[mai |

foo(0)

foo(2)

Measurement

int main ()
{
int i;
Enter (“main”) ;
for (i=0; 1 < 3; i++)
foo(i);
Leave (“‘main”) ;
return 0;

}

void foo (int 1)
{
Enter (“foo”) ;
if (1 > 0)
foo(i - 1);
Leave (“fo0”) ;

}

= Measurement code is inserted such that
every event of interest is captured directly

= Can be done in various ways

= Advantage:

Much more detailed information

= Disadvantage:

Processing of source-code / executable
necessary

Large relative overheads for small functions

M. Knobloch

Performance Analysis |, January 2015

12

Instrumentation techniques A JULICH

FORSCHUNGSZENTRUM

= Static instrumentation

= Program is instrumented prior to execution
= Dynamic instrumentation

= Program is instrumented at runtime

= Code is inserted
= Manually
= Automatically
= By a preprocessor / source-to-source translation tool
= By a compiler

= By linking against a pre-instrumented library / runtime
system

= By binary-rewrite / dynamic instrumentation tool

M. Knobloch Performance Analysis |, January 2015 13

Critical issues #) JOLICH

FORSCHUNGSZENTRUM

= Accuracy
= Intrusion overhead

s Measurement itself needs time and thus lowers
performance

= Perturbation
= Measurement alters program behaviour
= E.9., memory access pattern
= Accuracy of timers & counters
= Granularity
= How many measurements?

= How much information / processing during each
measurement?

< Tradeoff: Accuracy vs. Expressiveness of data

M. Knobloch Performance Analysis |, January 2015 14

Profiling / Runtime summarization OJULICH

FORSCHUNGSZENTRUM

= Recording of aggregated information
= lotal, maximum, minimum, ...
s FOr measurements
= Time
= Counts
= Function calls
= Bytes transferred
= Hardware counters
= Over program and system entities
= Functions, call sites, basic blocks, loops, ...
= Processes, threads

@ Profile = summarization of events over execution interval

M. Knobloch Performance Analysis |, January 2015 15

Tracing #))0LICH

FORSCHUNGSZENTRUM

= Recording information about significant points (events) during
execution of the program

= Enter/leave of a region (function, loop, ...)
= Send / receive a message, ...

= Save information in event record
= Timestamp, location, event type

= Plus event-specific information (e.g., communicator,
sender / receiver, ...)

s Abstract execution model on level of defined events

< Event trace = Chronologically ordered sequence of
event records

M. Knobloch Performance Analysis |, January 2015 16

Event tracing

Process A

void foo() {
trc_enter("foo");

trc_send(B);
send(B, tag, buf);

trc_exit("foo");

}

MONITOR

instrument

Process B

void bar() {
trc_enter("bar");

recv(A, tag, buf);
trc_recv(A);

trc_exit("bar");

}

MONITOR

Local trace A

A))0LICH

FORSCHUNGSZENTRUM

Global trace view

58 | ENTER
62| SEND 58| A | ENTER | 1
64| EXIT 60| B | ENTER | 2
62| A|SEND | B
1 | foo 64| A | EXIT 1
68| B |RECV | A
Local trace B il SR Sl -
60 | ENTER Tmerge
68 | RECV unify
69 | EXIT 1 o0 -
2 | bar
1 | bar

ysis I, I wus

17

Tracing vs. Profiling A jOLICH

FORSCHUNGSZENTRUM

= Tracing advantages

= Event traces preserve the temporal and spatial
relationships among individual events (¢ context)

= Allows reconstruction of dynamic application behaviour on
any required level of abstraction

= Most general measurement technique

s Profile data can be reconstructed from event traces
= Disadvantages

= Traces can very quickly become extremely large
= Writing events to file at runtime causes perturbation
= Writing tracing software is complicated

= Event buffering, clock synchronization, ...

M. Knobloch Performance Analysis |, January 2015 18

Online analysis #) JOLICH

FORSCHUNGSZENTRUM

= Performance data is processed during measurement run
= Process-local profile aggregation
= More sophisticated inter-process analysis using
= "Piggyback” messages
= Hierarchical network of analysis agents

= Inter-process analysis often involves application steering to
Interrupt and re-configure the measurement

M. Knobloch Performance Analysis |, January 2015 19

Post-mortem analysis A jOLICH

FORSCHUNGSZENTRUM

= Performance data is stored (at end) of measurement run
= Data analysis is performed afterwards

= Automatic search for bottlenecks

= Visual trace analysis

s Calculation of statistics

M. Knobloch Performance Analysis |, January 2015 20

Typical Performance Analysis Procedure !)JULICH

FORSCHUNGSZENTRUM

= Do | have a performance problem at all?
= Time / speedup / scalability measurements
= What is the key bottleneck (computation / communication)?
= MPI/ OpenMP / flat profiling
= Where Is the key bottleneck?
= Call-path profiling, detailed basic block profiling
= Why is it there?
= Hardware counter analysis
= Trace selected parts (to keep trace size manageable)
= Does the code have scalability problems?

= Load imbalance analysis, compare profiles at various
sizes function-by-function, performance modeling

M. Knobloch Performance Analysis |, January 2015 21

Remark: No Single Solution is Sufficient! !)JULICH

FORSCHUNGSZENTRUM

< A combination of different methods, tools and techniques
IS typically needed!
= Analysis
= Statistics, visualization, automatic analysis, data mining, ...

= Measurement

= Sampling / instrumentation, profiling / tracing, ...
= Instrumentation

= Source code / binary, manual / automatic, ...

M. Knobloch Performance Analysis |, January 2015 22

Score-P #))0LICH

FORSCHUNGSZENTRUM

= Community instrumentation and measurement — core-P

infrastructure inrastruchare for parale codes
= Developed by a consortium of performance
tool groups
JULICH .EJEJ(I:\II-I%‘IR:E%GI'IE m “,' T m @T'@“S"ﬂfiﬁ”&ilﬁ???“' 0 UNIVERSITY OF OREGON

= Next generation measurement system of
= Scalasca 2.x
= Vampir
= TAU
= Periscope
= Common data formats improve tool interoperability
= http://www.score-p.org

M. Knobloch Performance Analysis |, January 2015 24

Score-P Overview #) JOLICH

FORSCHUNGSZENTRUM

Call-path profiles

—

Hardware counter (PAPI, rusage) interface

Score-P measurement infrastructure

Instrumentation wrapper I

Process-level
parallelism
(MP1, SHMEM)

User instrumentation

Thread-l_t?vel Accelerator-_based Source code
parallelism parallelism instrumentation
(OpenMP, Pthreads) (CUDA, OpenCL) : i

Application

M. Knobloch Performance Analysis |, January 2015 25

C C 1 A jOLICH
German Research School
for Simulation Sciences

= Collection of trace-based performance analysis tools
= Specifically designed for large-scale systems
= Unique features:

= Scalable, automated search for event patterns
representing inefficient behavior

= Scalable identification of the critical execution path
= Delay / root-cause analysis
= Based on Score-P for instrumentation and measurement

= |ncludes convenience / post-processing commands
providing added value

= http://www.scalasca.org

M. Knobloch Performance Analysis |, January 2015 26

What is the Key Bottleneck? OJULICH

FORSCHUNGSZENTRUM

= Generate flat MPI profile using Score-P/Scalasca (or mpiP)
= Only requires re-linking
= Low runtime overhead

= Provides detailed information on MPI usage
= How much time is spent in which operation?
= How often is each operation called?
= How much data was transferred?

= Limitations:

= Computation on non-master threads and outside
of MPI_Init/MPI_Finalize scope ignored

M. Knobloch Performance Analysis |, January 2015 27

Flat MPI Profile: Recipe A jOLICH

FORSCHUNGSZENTRUM

1. Prefix your link command with
“scorep --nocompiler”

2. Prefix your MPI launch command with
“scalasca -analyze”

3. After execution, examine analysis results using
“scalasca -examine scorep_<tit/e>”

M. Knobloch Performance Analysis |, January 2015 28

Flat MPI Profile: Example A)0LICH

FORSCHUNGSZENTRUM

% module load UNITE scorep scalasca
% mpix1f90 -03 -qgqsmp=omp -c foo.f90
% mpix1f90 -03 -qgqsmp=omp -c bar.f90
% scorep --nocompiler \
mpix1f90 -03 -gsmp=omp -0 myprog foo.o bar.o

HEABHUBHH R AR AR AR HHHHR AR AR
1In the job script:
HUABHHHH R AR AR AR R R AR AR AR

module load UNITE scalasca
scalasca -analyze \
runjob --ranks-per-node P --np n [...] --exe ./myprog

HBHBHBHHH AR AR AR AR AR HRHRH1H
After job finished:
HBHBHBHHH AR AR AR AR AR HRHRH 1 H

% scalasca -examine scorep_myprog_Ppnxt_sum l;;7

M. Knobloch Performance Analysis |, January 2015 29

Flat MPI Profile: Example (cont.) A JOLICH

FORSCHUNGSZENTRUM

' IO cube-4.3.0: scorep_bt-mz_C_64_sum/summary.cubex [N CYNE]

File Display Plugins Help

Absolute v| |Absolute v| | Peer percent v
[Metric tree [Call tree ElFlat view Bl system tree || BoxPlot

-H 379.62 Time (sec) ~ | vm298.70 PARALLEL

—® 5.50e5 Visits (occ) —® 1.39 MPI_Init_thread

-0 0.00 Synchronizations (occ) —® 0.00 MPI_Comm_size

-0 0.00 Communications (occ) i —® 0.00 MPI_Comm_rank

- 9.57e9 Bytes transferred (bytes) ~®0.11 MPI_Comm_split

-0 0.00 MPI file operations (occ) —®0.43 MPI_Bcast

-0 0.00 Computational imbalance (sec) —®3.79 MPI_Isend e

—® 0.00 Minimum Inclusive Time (sec) —®3.32 MPI_Irecv L@ 78.82 MPI Rank 1

—@5.93 Maximum Inclusive Time (sec) —@70.58 MPI_Waitall =

—® 64.00 task_migration_loss —m 0.58 MPI_Barrier

—00.00 task_migration_win —® 0.72 MPI_Reduce

—® 0.00 MPI_Finalize

® 100.00 MP
v-0 - nodecard 13

e

O - hodecard 8
L®97.13 MPI Rank 19

~ (R
B o5 | <t ... All (64 elements) v|
0.00 379.62 (100.00%) 379.62|[0.00 70.58 (18.59%) 379.62|[0.00 0.0®(@000%) 100.00|
[CSS—
)

M. Knobloch Performance Analysis |, January 2015 30

Where is the Key Bottleneck? #) 0LICH

FORSCHUNGSZENTRUM

= Generate call-path profile using Score-P/Scalasca
= Requires re-compilation
= Runtime overhead depends on application characteristics

= Typically needs some care setting up a good measurement
configuration

= Filtering
= Selective instrumentation

= Option 1 (recommended):
Automatic compiler-based instrumentation

= QOption 2:
Manual instrumentation of interesting phases, routines, loops

M. Knobloch Performance Analysis |, January 2015 31

Call-path Profile: Recipe A jOLICH

FORSCHUNGSZENTRUM

1. Prefix your compile & link commands with
“scorep”

2. Prefix your MPI launch command with
“scalasca -analyze”

3. After execution, compare overall runtime with uninstrumented
run to determine overhead

4. If overhead is too high

1. Score measurement using
“scalasca -examine -s scorep_<title>”

2. Prepare filter file

3. Re-run measurement with filter applied using prefix
“scalasca -analyze -f <filter_file>”

5. After execution, examine analysis results using
“scalasca -examine scorep_<titl/e>”

M. Knobloch Performance Analysis |, January 2015 32

Call-path Profile: Example A) 0LICH

FORSCHUNGSZENTRUM

% module load UNITE scorep scalasca
% scorep mpix1f90 -03 -gsmp=omp -c foo.f90
% scorep mpix1f90 -03 -gsmp=omp -c bar.f90
% scorep \
mpix1f90 -03 -gsmp=omp -0 myprog foo.o bar.o

HUABHHHH R AR AR AR R R AR AR AR
1In the job script:
HEABHHHH R AR AR AR AR AR AR AR

module load UNITE scalasca
scalasca -analyze \
runjob --ranks-per-node P --np n [...] --exe ./myprog

4

M. Knobloch Performance Analysis |, January 2015 33

Call-path Profile: Example (cont.)

A jOLICH

FORSCHUNGSZENTRUM

% scalasca -examine -s epik_myprog_Ppnxt_sum

scorep-score -r ./epik_myprog_pPpnxt_sum/profile.cubex

INFO: Score report written to ./scorep_myprog_Ppnxt_sum/scorep.score

4

= Estimates trace buffer requirements

= Allows to identify canditate functions for filtering
= Computational routines with high visit count

and low time-per-visit ratio
= Region/call-path classification
= MPI (pure MPI library functions)
= OMP (pure OpenMP functions/regions)
= USR (user-level source local computation
= COM (“combined” USR + OpeMP/MPI)
= ANY/ALL (aggregate of all region types)

M. Knobloch Performance Analysis |, January 2015

COM

AR

USR COM USR

/L NN

USR OMP MPI USR

34

Call-path Profile: Example (cont.) A JOLICH

FORSCHUNGSZENTRUM

% less scorep_myprog_Ppnxt_sum/scorep.score

Estimated aggregate size of event trace: 162GB
Estimated requirements for largest trace buffer (max_buf): 2758MB
Estimated memory requirements (SCOREP_TOTAL_MEMORY) : 2822MB

(hint: when tracing set SCOREP_TOTAL_MEMORY=2822MB to avoid
intermediate flushes or reduce requirements using USR regions
filters.)

flt type max_buf[B] visits time[s] time[%] time/ region
visit[us]

ALL 2,891,417,902 6,662,521,083 36581.51 100.0 5.49 ALL
USR 2,858,189,854 6,574,882,113 13618.14 37.2 2.07 USR
OMP 54,327,600 86,353,920 22719.78 62.1 263.10 OMmMP
MPI 676,342 550,010 208.98 0.6 379.96 MPI
COM 371,930 735,040 34.61 0.1 47.09 CoM

/LSR 921,918,660 2,110,313,472 3290.11 9.0 1.56 matmul_sub)
USR 921,918,660 2,110,313,472 5914.98 16.2 2.80 binvcrhs
USR 921,918,660 2,110,313,472 3822.64 10.4 1.81 matvec_sub
USR 41,071,134 87,475,200 358.56 1.0 4.10 Thsinit
USR 41,071,134 87,475,200 145.42 0.4 1.66 binvrhs

\\USR 29,194,256 68,892,672 86.15 0.2 1.25 exact_solution/
OMP 3,280,320 3,293,184 15.81 0.0 4.80 !'$Somp parallel
[...]

4

M. Knobloch Performance Analysis |, January 2015 35

Call-path Profile: Filtering #))0LICH

FORSCHUNGSZENTRUM

= |n this example, the 6 most fequently called routines are
of type USR

= These routines contribute around 35% of total time
= However, much of that is most likely measurement overhead
* Frequently executed
= Time-per-visit ratio in the order of a few microseconds

= Avold measurements to reduce the overhead
<= List routines to be filtered in simple text file

M. Knobloch Performance Analysis |, January 2015 36

Filtering: Example A jOLICH

FORSCHUNGSZENTRUM

% cat filter.txt
SCOREP_REGION_NAMES_BEGIN
EXCLUDE
binvcrhs
matmul_sub
matvec_sub
binvrhs
Thsinit
exact_solution
SCOREP_REGION_NAMES_END 7

= Score-P filtering files support
= Wildcards (shell globs)
= Blacklisting
= Whitelisting
= Filtering based on filenames

M. Knobloch Performance Analysis |, January 2015 37

Call-path Profile: Example (cont.) A JOLICH

FORSCHUNGSZENTRUM

To verify effect of filter:

% scalasca -examine -s -f filter.txt \
scorep_myprog_Ppnxt_sum

HUEHBHHBHBH R R BB SRR
1In the job script:
HEABHHHH R AR AR AR AR AR AR AR

module load UNITE scalasca
scalasca -analyze -f filter.txt \
runjob --ranks-per-node P --np n [...] --exe ./myprog

HBHBHBHHH AR AR AR AR AR HRHRH1H
After job finished:
HBHBHBHHH AR AR AR AR AR AR R H

% scalasca -examine scorep_myprog_Ppnxt_sum [;;7

M. Knobloch Performance Analysis |, January 2015 38

Call-path Profile: Example (cont.) #) J0LICH

FORSCHUNGSZENTRUM
' IO cube-4.3.0: scorep_bt-mz_C_64x32_sum/summary.cubex & & &
File Display Plugins Help
Absolute v Absolute v | Peer percent v
= Metric tree [Call tree E] Flat view = System tree [H| BoxPlot

>-H 1.44e4 Time (sec) ~|>mE1.44e4 bt ~| | > m1.44e4 machine JUQUEEN =

8.77e7 Visits (occ)

0 0.00 Synchronizations (occ)

T 0.00 Communications (occ)

9.57e9 Bytes transferred (bytes)

0 0.00 MPI file operations (occ)

2696.16 Computational imbalance (sec)
T 0.00 Minimum Inclusive Time (sec)

6.99 Maximum Inclusive Time (sec)
64.00 task_migration_loss

0 0.00 task_migration_win

B et S Y

. . <|]< > -
v v [Au (2048 elements) vJ
<[]< > <L]< >
l0.00 1.44e4 (100.00%) 1.44e4{[0.00 1.44e4 (100.00%) 1.44e4|[0.00 1.44e4 (100.00%) 1.44e4

M. Knobloch Performance Analysis |, January 2015 39

Call-path Profile: Example (cont.)

A jOLICH

FORSCHUNGSZENTRUM
' IO cube-4.3.0: scorep_bt-mz_C_64x32_sum/summary.cubex (NN
File Display Plugins Help
Absolute v| |Absolute v| | Peer percent v
[Metric tree B Call tree | ElFlat view [System tree | [l BoxPlot

“E 1.44e4 Time (sec) ~ ||~ ®5.75 bt
—m 8.77e7 Visits (occ) -® 47.07 mpi_setup 2.33
-0 0.00 Synchronizations (occ) /' w11.42 MPI_Bcast
-0 0.00 Communications (occ) 5 -®2.51 env_setup
- 9.57e9 Bytes transferred (bytes) —® 0.05 zone_setup
-0 0.00 MPI file operations (occ) -®7.25 map_zones
-H 2696.16 Computational imbal —® 0.82 zone_starts
—00.00 Minimum Inclusive Ti —® 0.01 set_constants
~®6.99 Maximum Inclusive -®57.90 initialize
—® 64.00 task_migratio - 27.62 exact_rhs
-ag : : —® 0.09 timer_clear
-03814.83 _exch_qbc 1.3987 1
-m 26.98 adi 1130
-E1363.87 compute_rhs :
-E2401.11 x_solve
-E2717.25 y_solve
-®73.94 z_solve]
v-®12.92 I$omp parallel @z_solve.... 0.93247 L 0.86
o4 $omp do
1787.77 '$omp implicit barrie...
-H 140.29 add
—®22.61 MPI_Barrier
—m 0.02 timer_start 0.46
—m 0.03 timer_stop
—m 0.03 timer_read
- 21.37 verify
—® 14.60 MPI_Reduce
—® 0.17 print_results
~ —m 0.06 MPI_Finalize ~
v A v
< J< > < J< >

|0.00 1.44e4 (100.00%) 1.44e4| |0.00 1843.21 (12.80%) 1.44e4| 0.00 0.9004000.56 100,00

[C——
Selected "!$omp do @z_solve.prep.f:52")

M. Knobloch Performance Analysis |, January 2015 40

Call-path Profile: Example (cont.)

» IS cube-4.3.0: scorep_bt-mz_C_64x32_sum/summary.cubex

File Display Plugins Help

A jOLICH

FORSCHUNGSZENTRUM

(3
O
x

Absolute v Absolute v | Peer percent v
= Metric tree [Call tree [l Flat view [l System tree [BoxPlot |
»-00.00 Time (sec) ~ |~ 00.00 bt =
v-06802.14 Execution >-00.00 mpi_setu 2.3344 2.33
>-®90.11 MPI
v-00.00 OMP
0 0.00 Flush
183.03 Management
v-00.00 Synchronization 1.8675 1
>-@3417.33 Barrier
0.63 Critical
0 0.00 Lock API >-m 13.93 exact_rhs
0 0.00 Ordered 0 0.00 timer_clear
0 0.00 Overhead >-m117.33 _exch_qbc 1.4007 |1 38
>-@3908.33 Idle threads »-00.00 adi
8.77e7 Visits (occ) >-0388.27 compute_rhs
>0 0.00 Synchronizations (occ) ; >-@ 508.59 x_solve
>-0 0.00 Communications (occ) >-@3570.14 y_solve
>-m 9.57e9 Bytes transferred (bytes) v-00.00 z_solve 0.93377 |
>-00.00 MPI file operations (occ) v-00.00 !'$omp parallel @z_solve.pr... : r0.89
>-H 2696.16 Computational imbalance (sec) 0 0.00 !'$omp do @z_solve.prep...
0 0.00 Minimum Inclusive Time (sec) - bomp imp o
6.99 Maximum Inclusive Time (sec) >-m 18.75 add
64.00 task_migration_loss 0 0.00 MPI_Barrier
0 0.00 task_migration_win 0 0.00 timer_start 0.46689
0 0.00 timer_stop
0 0.00 timer_read 10.27
>-m 2.46 verify
0 0.00 MPI_Reduce
0 0.00 print_results 0 1.56e-03
~ 0 0.00 MPI_Finalize ~
v “ | All (2048 elements) ‘|
<[)< > <)< >
0.00 3417.33 (23.73%) 1.44e4/(0.00 1787.77 (52.31%) 3417.33}/0.00 0.00 (0.00%) 1787.77|
[. ©——
Selected "!$omp implicit barrier @z_solve.prep.f.428" =]
M. Knobloch Performance Analysis |, January 2015 41

Score-P: Advanced Features #) 0LICH

FORSCHUNGSZENTRUM

= Measurement can be extensively configured via
environment variables

= Check output of “scorep-info config-vars”
for details

= Allows for targeted measurements:
= Selective recording
= Phase profiling
= Parameter-based profiling

= Please ask us or see the user manual for details

M. Knobloch Performance Analysis |, January 2015 42

Why is the Bottleneck There? A) 0LICH

FORSCHUNGSZENTRUM

= This is highly application dependent!
= Might require additional measurements
= Hardware-counter analysis
= CPU utilization
= Cache behavior
= Selective instrumentation
= Manual/automatic event trace analysis

M. Knobloch Performance Analysis |, January 2015 43

Hardware Counters #) JOLICH

FORSCHUNGSZENTRUM

= Counters: set of registers that count processor events, e.g.
floating point operations or cycles

= Number of registers, counters and simultaneously measurable
events vary between platforms

= Can be measured by:

= perf:
= Integrated in Linux since Kernel 2.6.31
= Library and CLI

= LIKWID:
= Direct access to MSRs (requires Kernel module)
= Consists of multiple tools and an API
= X86 only

= PAPI (Performance API)

M. Knobloch Performance Analysis |, January 2015 44

PAPI #))0LICH

FORSCHUNGSZENTRUM

= Portable API: Uses the same routines to access counters across
all supported architectures

= Used by most performance analysis tools

= High-level interface:
= Predefined standard events, e.g. PAPI_FP_OPS
= Avallability and definition of events varies between platforms
= List of available counters: papi_avail (-d)
= Low-level interface:
= Provides access to all machine specific counters
= Not-portable
= More flexible
= List of available counters: papi_native_avail

M. Knobloch Performance Analysis |, January 2015 45

HW Counter Measurements w/ Score-P O JULICH

FORSCHUNGSZENTRUM

= Score-P supports both PAPI preset and native counters
= Available counters: papi_avail or papi_native_avail

% module load UNITE papi/5.0.1

% less $PAPI_ROOT/doc/papi-5.0.1-avail.txt

% less $PAPI_ROOT/doc/papi-5.0.1-native_avail.txt
% less $PAPI_ROOT/doc/papi-5.0.1-avail-detail.txt

= Specify using “SCOREP_METRIC_PAPI” environment variable

HUHHHHH AR AR HRAR AR AR AR R H 1
1In the job script:
HUHHHHH AR AR AR AR HBHRHRH RS

module load UNITE scalasca

export SCOREP_METRIC_PAPI=“PAPI_FP_OPS,PAPI_TOT_CYC"
scalasca -analyze -f filter.txt \

runjob --ranks-per-node P --np n [...] --exe ./myprog

4

M. Knobloch Performance Analysis |, January 2015

46

Automatic Trace Analysis w/ Scalasca #) J0LICH

FORSCHUNGSZENTRUM

= |dea: Automatic search for patterns of inefficient behavior

= |dentification of wait states and their root causes
Classification of behavior & quantification of significance
= Scalable identification of the critical execution path

> Call
© path
Low-level m @ _ 9
event trace s
Location

= Advantages
= Guaranteed to cover the entire event trace
= Quicker than manual/visual trace analysis
= Helps to identify hot-spots for in-depth manual analysis

M. Knobloch Performance Analysis |, January 2015 a7

Trace Generation & Analysis w/ Scalasca A JULICH

FORSCHUNGSZENTRUM

= Enable trace collection & analysis using “-t” option of
“scalasca -analyze”:

HUHHHHH AR AR AR AR AR HRHRH R U1
1In the job script:
HUHHHHH AR AR AR AR AR AR AR R U1

module lToad UNITE scalasca

export SCOREP_TOTAL_MEMORY=120MB # Consult score report
scalasca -analyze -f filter.txt -t \

runjob --ranks-per-node P --np n [...] --exe ./mypréﬁ7

= ATTENTION:
= Traces can quickly become extremely large!

= Remember to use proper filtering, selective instrumentation,
and Score-P memory specification

= Before flooding the file system, ask us for assistance!

M. Knobloch Performance Analysis |, January 2015 48

Scalasca Trace Analysis Example A JOLICH

FORSCHUNGSZENTRUM
'n IO cube-4.3.0: scorep_bt-mz_C_64x32_traceftrace.cubex o & &
File Display Plugins Help
Absolute v| | Absolute v || Peer percent v
& Metric tree | [call tree ElFlat view | [System tree [E| BoxPlot
| v-0 0.00 Time (sec) ISH | -~
v-07083.58 Execution 100 2.34
>-®103.81 MPI
v-00.00 OMP
@ 0.00 Flush
>-@ 908.46 Management
v~ 0.00 Synchronization 80 1
v-00.00 Barrier - —
-0 0.00 Explicit 10.34 initialize
v-m 125.33 Implicit >-m 13.78 exact_rhs
3343.76 Wait at Barrier 0 0.00 timer_clear
0 0.00 Task Wait >-m 83.71 exch_qgbc 60 1 +1.39
>-m 0.69 Critical v i
>-00.00 Lock API
0 0.00 Ordered
0 0.00 Overhead
>-@ 3594.87 Idle threads 40 1 L 0.90
8.77e7 Visits (occ) — " :
>-m 128.00 Synchronizations (occ) -00 !$omp do @z_solve.prep...
-0 0.00 Pair-wise synchronizations for R... @ 1795.73 !$omp implicit barrie...
>~ 3.67e5 Communications (occ) >-m 13.14 add
>-® 9.57e9 Bytes transferred (bytes) 0 0.00 MPI_Barrier 20
>-00.00 MPI file operations (occ J0.00 timer_start
>~ 6582.92 Delay costs (sec) L 0.27
>-m 77.42 Wait states (propagating vs. ter...
>-@ 77.39 Wait states (direct vs. indi :
>-® 7.40 Critical path (sec) T 0.00 MPI_Reduce : 0 1.13e-08
>-H 1.52e4 Performance impact (sec) L 0 0.00 print_results L
>-® 2737.14 Computational imbalance (sec) |- 0 0.00 MPI_Finalize . {A” (2048 elements) vJ
<[J<> <[)< >
0.00 3343.76 (22.06%) 1.52e4|(0.00 1795.73 (53.70%) 3343.76(|0.00 44 .59 100.00
0.00 1.04 (0.06%) 1795.73
[- ©—
Selected "OMP thread 10" =)

M. Knobloch Performance Analysis |, January 2015 49

Vampir Event Trace Visualizer OJULICH

FORSCHUNGSZENTRUM

llllll

= Offline trace visualization for Score-P’s
OTF2 trace files SF. SIE

= Visualization of MPI, OpenMP — SR
and application events:

= All diagrams highly customizable (through context menus)

= Large variety of displays for ANY part of the trace
= http://www.vampir.eu

= Advantage:
= Detailed view of dynamic application behavior
= Disadvantage:
= Requires event traces (huge amount of data)
= Completely manual analysis

M. Knobloch Performance Analysis |, January 2015 50

Vampir Displays #) JOLICH

FORSCHUNGSZENTRUM

VYampir - [Trace View - fhome/doleschaftracefilesf/feature-traces/wr io-mem-rusage/wrt. I'h. ot
W File Wiew Help =S
Wiew Chart Filter
=L EmR'S ¢ v 4 IR TR KON USR0S S w00 0
ExLheTERS BC V2
Timeline Function summary
All Processes, Accumulated Exclusive Time p...
0s 55 10 s 15 s 20 s 25s 30 s 35s 40 s 500 s 0s
Process 8
Process 25
Process 42
Process 59
Process 0 : : : : : -
1l : : ,
2 I I i Communication Matrix View
3 _ Mumber of Messages
S
5 11| .
6 {111 |
H HE BN | 1
Process 0, Values of Counter "MEM_APP ALLOC“ over Time
Iy YV : :
S50 M
0 M : : : 5 5 : :
Function Legend Process Ssummary Context View
P Epplication ® Function Summary £ l -
DY
= /o - 10 S 20 s Property ‘\.I’alue ‘I
Mo Display Function Summary
B mEM Function Group MPI (8)
™ el Accumulated Exclusive Time 748.945947 s (29,1983258%)
[pHvs
B T AP
M wrr

M. Knobloch Performance Analysis |, January 2015 51

Allinea Performance Reports ma:""ea A) 0LICH

FORSCHUNGSZENTRUM

= Single page report provides quick overview of performance
Issues

= Works on unmodified, optimized executables
= Shows CPU, memory, network and 1/O utilization

= Supports MPI, multi-threading and accelerators
= Saves data in HTML, CVS or text form

= http://www.allinea.com/products/allinea-performance-reports

= Note: License limited to 512 processes (with unlimited number
of threads)

M. Knobloch Performance Analysis |, January 2015 52

Example Performance Reports

M. Knobloch

A jOLICH

FORSCHUNGSZENTRUM

Summary: cp2k.popt is CPU-bound in this configuration

The total wallclock time was spent as follows:

CPU 565% -
MP| 435% -

/O 0.0% |

Time spent running application code. High values are usually good.
This is average; check the CPU performance section for optimization advice.

Time spent in MPI calls. High values are usually bad.
This is average; check the MPI breakdown for advice on reducing it.

Time spent in filesystem I/0. High values are usually bad.
This is negligible; there's no need to investigate 1/0 performance.

This application run was CPL-bound. A breakdown of this time and advice for investigating further is in the CP U section below.

CPU

A breakdown of how the 56.5% total CPU time was spent:
Scalar numericops 27.7% M

Vector numericops 11.3% I

Memory accesses 60.9% [l

Other 0.0 |

The per-core performance is memory-bound. Use a profiler to
identify time-consuming loops and check their cache performance.

Little time is spent in vectorized instructions. Check the compiler's
vectorization advice to see why key loops could not be vectorized.

/O

A breakdown of how the 0.0% total I/O time was spent:
Time in reads 0.0% |

Time in writes 0.0%

|
Estimated read rate 0 bytes/s |
Estimated write rate 0 bytes/s |

No time is spent in /O operations. There's nothing to optimize here!

MPI

Of the 43.5% total time spent in MPI calls:
Time in collective calls 8.2% |

Time in point-to-point calls 91.8%]

Estimated collective rate 169 Mb/s I
Estimated point-to-point rate 50.6 Mb/s |l

The point-to-point transfer rate is low. This can be caused by
inefficient message sizes, such as many small messages, or by
imbalanced workloads causing processes to wait. Use an MPI
profiler to identify the problematic calls and ranks.

Memory

Per-process memory usage may also affect scaling:

Mean process memory usage 82.5Mb [N

Peak process memory usage 89.3 Mb [N

Peak node memory usage 7.4% |

The peak node memory usage is low. You may be able to reduce

the total number of CPU hours used by running with fewer MPI
processes and more data on each process.

Performance Analysis |, January 2015 53

m, !Elce Unlversity) !)JU'—'CH

= Multi-platform sampling-based call-path profiler
= Works on unmodified, optimized executables
= http://npctoolkit.org

= Advantages:
= QOverhead can be easily controlled via sampling interval

= Advantageous for complex C++ codes with many small
functions

= Loop-level analysis (sometimes even individual source lines)
= Supports POSIX threads
= Disadvantages:
= Statistical approach that might miss details
= MPI1/OpenMP time displayed as low-level system calls

M. Knobloch Performance Analysis |, January 2015 54

HPCToolkit: Recipe #) JOLICH

FORSCHUNGSZENTRUM

1. Compile your code with “-g -qnoipa”

= For MPI, also make sure your application calls
MPI_Comm_rank first on MPI_COMM_WORLD

2. Prefix your link command with “hpc11nk”
= |gnore potential linker warnings ;-)

3. Run your application as usual, specifying requested metrics
with sampling intervals in environment variable
“HPCRUN_EVENT_LIST"

4. Perform static binary analysis with
“*hpcstruct --loop-fwd-subst=no <app>"

5. Combine measurements with
“hpcprof -S <struct file> \
-I “<path_to_src>/*” <measurement_dir>"

6. View results with
*hpcviewer <hpct_database>”

M. Knobloch Performance Analysis |, January 2015 55

HPCToolkit: Metric Specification #) 0LICH

FORSCHUNGSZENTRUM

= Specified via environment variable HPCRUN_EVENT_LIST

= General format:
“name@interval [;name@interval ...]”

= Possible sample sources:
= WALLCLOCK
= PAPI counters
= |O (use w/o interval spec)
= MEMLEAK (use w/o interval spec)

= [nterval: given in microseconds
= E.g.,, 10000 — 100 samples per second

M. Knobloch Performance Analysis |, January 2015 56

Example: hpcviewer

Eile Debug Help

& hpcviewer: sor <@jj28103> <

A jOLICH

FORSCHUNGSZENTRUM

% sor.c i3 =8
6570 fkiml = Field[k][j-1]; [~
571 rki = rRhs[k][j];

672 akj = Ans[k1[jl;
for (i=1+mod; i=<=nxl; i+=2)
574 {
575 delta = omega*(fkjl[i+1] + fkjli-1] +Fkipl[i] + fkjiml[il]
676 -4.0%Fki[1] - rkilil);
577
678 tmpres += fabs(delta);
679
680 Fkj[i] = Fki[i] + delta;
581
682 tmperr += fabs(fkj[i] - akj[il); =
£a2 1 Ld
L,)
i Calling Context View | ®, Callers View Ty, Flat View =8
+ & fu W F A A
scope WALLCLOCK (us).[0.0]) WALLCLOCK (us).[0,0] (E) WALLCLOCK (us).[1.0] (I} WALLCLOCK (u
Experiment Aggregate Metrics 4.79e+06 100 % 4.79=+06 100 % 4.76=+06 100 % 4.76
= main 4.79e+06 100 % 4.76e+06 100 %
v B sor_iter 4.68e+06 97.7% 4.01e+06 83.7% 4.66e+06 97.7% 3.95
= |oop af sor.c: 344 2.67e+06 55.7% 2.00e+06 41.7% 2.71let06 56.8% 2.00
< inlined from sor.c: 658 2.00=+06 41.7% 2.00=+06 41.7% 2.00=+06 42.0% 2.00
= loop at sor.c: 662 2.00e+06 41.7% 2.00e+06 42.0%
= loop atsor.ci 673 2.00=+06 41.7%% 3.55e+04 0.7%% 2.00=+06 42.0%%

inlined from sor.c: 331 8.38et+05 17.5% 8.38=t+05 17.5% 7.06e+05 14.8% .06
sor.c. 675 6.59=+05 13.8% 6.59=+05 13.8% 6.23et+05 13.1% 6.23
sor.c. 882 2.40e+05 B.0% 2.40e+05 B.0% 3.96e+D5 B.3% 3.96
50r.C. 678 1.08e+05 2.2% 1.08e+05 2.2% B8.39=+04 1.8% B.39: [
[»]
1910 of 4000 |
M. Knobloch Performance Analysis |, January 2015 57

TAU #) JOLICH

FORSCHUNGSZENTRUM

= Very portable tool set for
Instrumentation, measurement and analysis
of parallel multi-threaded applications

= http://tau.uoregon.edu/

Tuning and Analysis Utilities

= Supports
= Various profiling modes and tracing
= Various forms of code instrumentation
= C, C++, Fortran, Java, Python
= MPI, multi-threading (OpenMP, Pthreads, ...)
Accelerators | |

M. Knobloch Performance Analysis |, January 2015

TAU: Instrumentation #) JOLICH

FORSCHUNGSZENTRUM

= Flexible instrumentation mechanisms at multiple levels
= Source code
= manual
= automatic
= C, C++, F77/90/95 (Program Database Toolkit (PDT))
= OpenMP (directive rewriting with Opari)
= Object code
= pre-instrumented libraries (e.g., MPI using PMPI)
= statically-linked and dynamically-loaded (e.g., Python)
= EXxecutable code
= dynamic instrumentation (pre-execution) (Dynlinst)
= virtual machine instrumentation (e.g., Java using JVMPI)
= Support for performance mapping
= Support for object-oriented and generic programming

M. Knobloch Performance Analysis |, January 2015 59

TAU: Basic Profile View

#) 0LICH

FORSCHUNGSZENTRUM

File Options Windows Help

n,c,t, 0,0,0 - 512proc/samrai/taudata/neutronbackup/rs/sameer/Users/

File Options Windows Help

™

COUNTER NAME: P_WALL_CLOCK_TIME (seconds)

345.5474 [' P1_Alireduce()

164951 | algs::HyperbolicLevellntegrator3::advance_bdry_fill_create
103.2566 N algs::HyperbolicLevellntegrator3::advanceLevel()
59.0096 [algs::HyperbolicLevellntegrator3::fill_new_level_create
37.4482 [mesh::GriddingAlgorithm3::load_balance_boxes
32.8548 [] algs::HyperbolicLevellntegrator3::advance_bdry_fill_comm

21.4095 [mesh::GriddingAlgorithm3::findRefinementBoxes()
13.4925 [algs::HyperbolicLevellntegrator3::coarsen_fluxsum_create
12.6572 algs::HyperbolicLevellntegrator3::coarsen_sync_create
10.4408] mesh::GriddingAlgorithm3::find_boxes_containing_tags

8.9215 [l MPI_Init()

8.6893] mesh::GriddingAlgorithm3::bdry_fill_tags_create
7.2717 I MPI_Bcast()

7.1321 [MPI_Wait()

408331 algs::HyperbolicLevellntegrator3::error_bdry_fill_comm
3.6778 | MPI_Finalize()

3.1405 | MPI_Isend()

3.0156 | MPI_Waitall{)

2.3457 mesh::GriddingAlgorithm3::remove_intersections_regrid_all
1.7275 | MPI_Test()

1.6515| algs::HyperbolicLevellntegrator3::fill_new_level_comm
1.3919 | MPI_Comm_rank()

M. Knobloch

Performance Analysis |, January 2015

60

TAU: Callgraph Profile View #) JOLICH

FORSCHUNGSZENTRUM

X Call Graph n,c,t, 0,0,0 - ozone/tests/MFIX/apps/sameer/users/home/sanfs/mnt/

= 2 T ey ‘ S

Box width and
color indicate
different metrics

M. Knobloch Performance Analysis |, January 2015 61

TAU: 3D Profile View #) JULICH

He| FORSCHUNGSZENTRUM
X ParaProf Visualizer . ght and COIOr lB@E]
File Options Windows Help |nd|cate dlﬁ:erent

met”CS ; ® Triangle Mesh

Bar Plot

Scatter Plot

Height Metric

Exclusive w | |Time v

Color Metric

8 37T

<. 2836C7 Exclusive v | |Time -

MPI_Barrier(
Function

Thread

Height value 1.2223E8 microseconds

Color value 1.2223E8 microseconds

Mesh Plot | Axes 'j ColorScale | Render |

Orientation
v| Show Axes NW NE
SE® SW

M. Knobloch Performance Analysis |, January 2015 62

Tools not yet mentioned

= Gprof

= Callgrind

= MAQAO

= ompP

= mpiP

= Allinea MAP (commercial)
= [ntel VTune (commercial)
= QOpen|SpeedShop

= Extrae/Paraver

= PerfSuite

= Nuvidia visual profiler

M. Knobloch Performance Analysis |, January 2015

A jOLICH

FORSCHUNGSZENTRUM

63

